Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomacromolecules Pub Date : 2024-11-11 Epub Date: 2024-10-17 DOI:10.1021/acs.biomac.4c00971
Wenting Li, Longjie Li, Jiale Hu, Dongdong Zhou, Hao Su
{"title":"Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix.","authors":"Wenting Li, Longjie Li, Jiale Hu, Dongdong Zhou, Hao Su","doi":"10.1021/acs.biomac.4c00971","DOIUrl":null,"url":null,"abstract":"<p><p>Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"6967-6986"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00971","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.

作为人工细胞外基质的超分子肽水凝胶的设计与应用
超分子肽水凝胶(Supramolecular peptide hydrogels,SPHs)由含有水凝胶剂和功能表位的肽组成,首先可以自组装成纳米纤维,然后物理缠结在一起形成动态三维网络。它们具有多孔结构、优异的生物活性和高动态性,类似于细胞外基质(ECM),在人工 ECM 方面具有巨大潜力。水凝胶的特性在很大程度上取决于肽。水凝胶剂之间的非共价相互作用推动了组装体的形成,并进一步转变为水凝胶,而生物活性表位则调节了细胞-细胞和细胞-ECM 之间的相互作用。因此,SPHs 可支持细胞生长,是模拟 ECM 的理想生物材料。本综述概述了 SPHs 从水凝胶到功能表位的经典分子设计,并总结了 SPHs 作为人工 ECMs 在神经系统修复、伤口愈合、骨和软骨再生以及类器官培养方面的最新进展。这种新兴的 SPH 平台可为开发更有效的组织工程生物材料提供另一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信