{"title":"Nanoparticles Fueled by Enzyme for the Treatment of Hyperlipidemic Acute Pancreatitis.","authors":"Geer Chen, Yunfeng Huang, Haohui Yu, Junru Wang, Haobing Li, Shuqi Shen, Xingjian Zhou, Keqing Shi, Hongwei Sun","doi":"10.1021/acsbiomaterials.4c00474","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperlipidemic acute pancreatitis (HAP) is a serious inflammatory pancreatic disease commonly seen in patients with disorders of lipid metabolism. Decreasing blood triglyceride levels and proinflammatory factors can alleviate hyperlipidemic pancreatitis. The lipase that enhanced the Brownian motion of mesoporous silica in triglyceride solutions could accelerate decomposition of the lipid and improve the efficiency of absorption. In this study, we developed a mesoporous silica nanoparticle with dual modification of IL-6 aptamer and lipase for the treatment of HAP. The nanoparticle could increase the ability of particles to absorb inflammatory factor IL-6 and decompose triglycerides. For every 10 mg of the dual-modified nanoparticles, the efficiency of capturing IL-6 was approximately 9.67 pg/mL and of decomposing triglycerides was approximately 3.88 mg/mL in the plasma of HAP patients within 2 h. In summary, the mesoporous silica nanoparticle could absorb the IL-6 inflammatory factor through IL-6 aptamers and decompose triglycerides through lipase. Furthermore, based on clinically available plasma exchange technology, combined with our developed dual-modified nanoparticles, we designed an absorption device for the treatment of hyperlipidemic pancreatitis; it works to promote the treatment of hyperlipidemic pancreatitis.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559557/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c00474","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperlipidemic acute pancreatitis (HAP) is a serious inflammatory pancreatic disease commonly seen in patients with disorders of lipid metabolism. Decreasing blood triglyceride levels and proinflammatory factors can alleviate hyperlipidemic pancreatitis. The lipase that enhanced the Brownian motion of mesoporous silica in triglyceride solutions could accelerate decomposition of the lipid and improve the efficiency of absorption. In this study, we developed a mesoporous silica nanoparticle with dual modification of IL-6 aptamer and lipase for the treatment of HAP. The nanoparticle could increase the ability of particles to absorb inflammatory factor IL-6 and decompose triglycerides. For every 10 mg of the dual-modified nanoparticles, the efficiency of capturing IL-6 was approximately 9.67 pg/mL and of decomposing triglycerides was approximately 3.88 mg/mL in the plasma of HAP patients within 2 h. In summary, the mesoporous silica nanoparticle could absorb the IL-6 inflammatory factor through IL-6 aptamers and decompose triglycerides through lipase. Furthermore, based on clinically available plasma exchange technology, combined with our developed dual-modified nanoparticles, we designed an absorption device for the treatment of hyperlipidemic pancreatitis; it works to promote the treatment of hyperlipidemic pancreatitis.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture