{"title":"Sequential Linker Installation in Metal-Organic Frameworks.","authors":"Zongsu Han, Yihao Yang, Joshua Rushlow, Rong-Ran Liang, Hong-Cai Zhou","doi":"10.1021/acs.accounts.4c00564","DOIUrl":null,"url":null,"abstract":"<p><p>ConspectusMetal-organic frameworks (MOFs) represent a sophisticated blend of inorganic and organic components, promoting the development of coordination chemistry greatly and offering a versatile platform for tailored functionalities. By combining various metal nodes, organic linkers, and functional guests, MOFs provide numerous pathways for their design, synthesis, and customization. Among these, sequential linker installation (SLI) stands out as a novel and crucial strategy, enabling the precise integration of desired properties and functions at the atomic scale. SLI enhances structural diversity and stability while facilitating the meticulous construction of robust frameworks by leveraging open metal sites and functional organic linkers at targeted locations. Compared to the direct synthesis of MOFs, postsynthetic modification methods allow for precise regulation of their structures and corresponding properties. While unlike conventional postsynthetic modification methods, SLI requires the careful selection of linkers and framework design to ensure precise positioning for installation, which gives rise to the well-designed and ordered positions for the installed linkers, confirmed directly by X-ray diffraction technology.Recent advancements in MOF synthesis have led to the creation of increasingly tailored flexible matrix structures, particularly due to the diverse connection modes of multicore metal clusters, especially for the Zr<sub>6</sub> cluster. The spatial hindrance of certain ligands has resulted in the formation of unsaturated metal clusters and various missing linker pockets. Examples of these advanced MOFs include PCN-606, PCN-608, PCN-609, PCN-700, and PCN-808, which feature specific open metal sites and certain framework flexibility conducive to SLI. Strategically positioned open metal sites within these frameworks serve as predetermined anchor points for desired functional molecules, while the frameworks' flexibility can accommodate molecules of varying sizes to a certain extent, enlarging the scopes of application greatly. This precise positioning of functional groups enables the creation of tailored sites for enhanced applications, such as adsorption, catalysis, and recognition.In this Account, we delve into the intricate process of designing and synthesizing MOFs with appropriate missing-linker pockets for the aforementioned applications. We discuss the meticulous selection of functional linkers and the methods used to insert them into the corresponding missing-linker pockets within the MOFs. Additionally, we explore the diverse properties and functionalities of the resulting MOFs, focusing on their adsorptive, catalytic, and recognition performance. Furthermore, we provide insights into the future trajectory of SLI methods, complemented by our recent works. This Account not only reviews the evolution of the SLI method but also underscores its practical applications across various functional domains, paving a rational pathway for the future development of advanced multifunctional MOFs through this method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"3217-3226"},"PeriodicalIF":16.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542145/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00564","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ConspectusMetal-organic frameworks (MOFs) represent a sophisticated blend of inorganic and organic components, promoting the development of coordination chemistry greatly and offering a versatile platform for tailored functionalities. By combining various metal nodes, organic linkers, and functional guests, MOFs provide numerous pathways for their design, synthesis, and customization. Among these, sequential linker installation (SLI) stands out as a novel and crucial strategy, enabling the precise integration of desired properties and functions at the atomic scale. SLI enhances structural diversity and stability while facilitating the meticulous construction of robust frameworks by leveraging open metal sites and functional organic linkers at targeted locations. Compared to the direct synthesis of MOFs, postsynthetic modification methods allow for precise regulation of their structures and corresponding properties. While unlike conventional postsynthetic modification methods, SLI requires the careful selection of linkers and framework design to ensure precise positioning for installation, which gives rise to the well-designed and ordered positions for the installed linkers, confirmed directly by X-ray diffraction technology.Recent advancements in MOF synthesis have led to the creation of increasingly tailored flexible matrix structures, particularly due to the diverse connection modes of multicore metal clusters, especially for the Zr6 cluster. The spatial hindrance of certain ligands has resulted in the formation of unsaturated metal clusters and various missing linker pockets. Examples of these advanced MOFs include PCN-606, PCN-608, PCN-609, PCN-700, and PCN-808, which feature specific open metal sites and certain framework flexibility conducive to SLI. Strategically positioned open metal sites within these frameworks serve as predetermined anchor points for desired functional molecules, while the frameworks' flexibility can accommodate molecules of varying sizes to a certain extent, enlarging the scopes of application greatly. This precise positioning of functional groups enables the creation of tailored sites for enhanced applications, such as adsorption, catalysis, and recognition.In this Account, we delve into the intricate process of designing and synthesizing MOFs with appropriate missing-linker pockets for the aforementioned applications. We discuss the meticulous selection of functional linkers and the methods used to insert them into the corresponding missing-linker pockets within the MOFs. Additionally, we explore the diverse properties and functionalities of the resulting MOFs, focusing on their adsorptive, catalytic, and recognition performance. Furthermore, we provide insights into the future trajectory of SLI methods, complemented by our recent works. This Account not only reviews the evolution of the SLI method but also underscores its practical applications across various functional domains, paving a rational pathway for the future development of advanced multifunctional MOFs through this method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.