{"title":"Applications of atomic data to studies of the Sun","authors":"Peter R. Young","doi":"10.1140/epjd/s10053-024-00915-6","DOIUrl":null,"url":null,"abstract":"<p>The Sun is a standard reference object for astrophysics and also a fascinating subject of study in its own right. X-ray and extreme ultraviolet movies of the Sun’s atmosphere show an extraordinary diversity of plasma phenomena, from barely visible bursts and jets to coronal mass ejections that impact a large portion of the solar surface. The processes that produce these phenomena, heat the corona and power the solar wind remain actively studied and accurate atomic data are essential for interpreting observations and making model predictions. For the Sun’s interior intense effort is focused on resolving the “solar problem,” (a discrepancy between solar interior models and helioseismology measurements) and atomic data are central to both element abundance measurements and interior physics such as opacity and nuclear reaction rates. In this article, topics within solar interior and solar atmosphere physics are discussed and the role of atomic data described. Areas of active research are highlighted and specific atomic data needs are identified.</p><p>An image of a solar active region obtained with the 193 A channel of SDO/AIA, showing plasma at around 1.5 million degrees.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 10","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjd/s10053-024-00915-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00915-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Sun is a standard reference object for astrophysics and also a fascinating subject of study in its own right. X-ray and extreme ultraviolet movies of the Sun’s atmosphere show an extraordinary diversity of plasma phenomena, from barely visible bursts and jets to coronal mass ejections that impact a large portion of the solar surface. The processes that produce these phenomena, heat the corona and power the solar wind remain actively studied and accurate atomic data are essential for interpreting observations and making model predictions. For the Sun’s interior intense effort is focused on resolving the “solar problem,” (a discrepancy between solar interior models and helioseismology measurements) and atomic data are central to both element abundance measurements and interior physics such as opacity and nuclear reaction rates. In this article, topics within solar interior and solar atmosphere physics are discussed and the role of atomic data described. Areas of active research are highlighted and specific atomic data needs are identified.
An image of a solar active region obtained with the 193 A channel of SDO/AIA, showing plasma at around 1.5 million degrees.
太阳是天体物理学的标准参照物,其本身也是一个引人入胜的研究课题。太阳大气层的 X 射线和极紫外线电影显示了非同寻常的多种等离子体现象,从几乎看不见的爆发和喷流到影响大部分太阳表面的日冕物质抛射。产生这些现象、加热日冕和为太阳风提供动力的过程仍在积极研究之中,准确的原子数据对于解释观测结果和进行模型预测至关重要。对于太阳内部,人们正集中精力解决 "太阳问题"(太阳内部模型与日震学测量之间的差异),而原子数据对于元素丰度测量和内部物理学(如不透明度和核反应速率)都至关重要。本文讨论了太阳内部物理学和太阳大气物理学的主题,并介绍了原子数据的作用。文章强调了积极研究的领域,并确定了具体的原子数据需求。
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.