{"title":"Omic-driven strategies to unveil microbiome potential for biodegradation of plastics: a review","authors":"Shafana Farveen Mohamed, Rajnish Narayanan","doi":"10.1007/s00203-024-04165-3","DOIUrl":null,"url":null,"abstract":"<div><p>Plastic waste accumulation has lately been identified as the leading and pervasive environmental concern, harming all living beings, natural habitats, and the global market. Given this issue, developing ecologically friendly solutions, such as biodegradation instead of standard disposal, is critical. To effectively address and develop better strategies, it is critical to understand the inter-relationship between microorganisms and plastic, the role of genes and enzymes involved in this process. However, the complex nature of microbial communities and the diverse mechanisms involved in plastic biodegradation have hindered the development of efficient plastic waste degradation strategies. Omics-driven approaches, encompassing genomics, transcriptomics and proteomics have revolutionized our understanding of microbial ecology and biotechnology. Therefore, this review explores the application of omics technologies in plastic degradation studies and discusses the key findings, challenges, and future prospects of omics-based approaches in identifying novel plastic-degrading microorganisms, enzymes, and metabolic pathways. The integration of omics technologies with advanced molecular technologies such as the recombinant DNA technology and synthetic biology would guide in the optimization of microbial consortia and engineering the microbial systems for enhanced plastic biodegradation under various environmental conditions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04165-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plastic waste accumulation has lately been identified as the leading and pervasive environmental concern, harming all living beings, natural habitats, and the global market. Given this issue, developing ecologically friendly solutions, such as biodegradation instead of standard disposal, is critical. To effectively address and develop better strategies, it is critical to understand the inter-relationship between microorganisms and plastic, the role of genes and enzymes involved in this process. However, the complex nature of microbial communities and the diverse mechanisms involved in plastic biodegradation have hindered the development of efficient plastic waste degradation strategies. Omics-driven approaches, encompassing genomics, transcriptomics and proteomics have revolutionized our understanding of microbial ecology and biotechnology. Therefore, this review explores the application of omics technologies in plastic degradation studies and discusses the key findings, challenges, and future prospects of omics-based approaches in identifying novel plastic-degrading microorganisms, enzymes, and metabolic pathways. The integration of omics technologies with advanced molecular technologies such as the recombinant DNA technology and synthetic biology would guide in the optimization of microbial consortia and engineering the microbial systems for enhanced plastic biodegradation under various environmental conditions.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.