Comment on “Solitary Wave Solutions in (2+1) Dimensions: The KdV Equation Derived from Ideal Fluid Models”, IJTP (2024) 63:105

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Karczewska Anna, Rozmej Piotr, Kędziora Przemysław
{"title":"Comment on “Solitary Wave Solutions in (2+1) Dimensions: The KdV Equation Derived from Ideal Fluid Models”, IJTP (2024) 63:105","authors":"Karczewska Anna,&nbsp;Rozmej Piotr,&nbsp;Kędziora Przemysław","doi":"10.1007/s10773-024-05804-7","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the solutions presented in <i>Solitary Wave Solutions in (2+1) Dimensions: The KdV Equation Derived from Ideal Fluid Models</i> by Javid et al. (Int. J. Theor. Phys. <b>63</b>, 105 2024) although mathematically correct have no physical sense. The results of the commented article show the danger of using only mathematics to solve nonlinear wave equations when the physical origin of the solved equations is forgotten.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"63 10","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10773-024-05804-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05804-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the solutions presented in Solitary Wave Solutions in (2+1) Dimensions: The KdV Equation Derived from Ideal Fluid Models by Javid et al. (Int. J. Theor. Phys. 63, 105 2024) although mathematically correct have no physical sense. The results of the commented article show the danger of using only mathematics to solve nonlinear wave equations when the physical origin of the solved equations is forgotten.

评论 "Solitary Wave Solutions in (2+1) Dimensions:从理想流体模型推导出的 KdV 方程",IJTP (2024) 63:105
我们表明,贾维德等人在《(2+1)维空间中的孤波解》(Solitary Wave Solutions in (2+1) Dimensions:(Int. J. Theor. Phys. 63, 105 2024) 中提出的解法虽然在数学上是正确的,但却没有物理意义。评论文章的结果表明,如果只用数学来求解非线性波方程,而忘记了所求解方程的物理起源,那将是非常危险的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信