{"title":"Characterization and genomic analysis of phage vB_SmaP_c9-N, a novel Stenotrophomonas maltophilia podophage with antibiofilm activity","authors":"Yaosheng Xi, Wei Zhou, Xiao Li, Xiangru Lan, Qili Yang, Yu-Ping Huang","doi":"10.1007/s00705-024-06148-7","DOIUrl":null,"url":null,"abstract":"<div><p><i>Stenotrophomonas maltophilia</i> strains are increasingly emerging as multidrug-resistant pathogens. Moreover, <i>S. maltophilia</i> commonly produces biofilms that enhance antibiotic resistance in bacteria. Phages are effective alternative drugs for treating <i>S. maltophilia</i> infections. In this study, the lytic phage vB_SmaP_c9-N (abbreviated as Φc9-N), which is specific for <i>S. maltophilia</i>, was isolated from Nanhu Lake, Wuhan, China. Electron microscopy observation revealed that Φc9-N is a podophage<i>.</i> Φc9-N is stable over a wide pH range, from pH 4 to 10, and its activity did not change after storage at 4 °C for 2 months. The latency period of Φc9-N is 5 min, and its outbreak period is 35 min. Antibacterial tests showed that Φc9-N could effectively inhibit the growth of <i>S. maltophilia</i> c24. Moreover, the biofilm production of <i>S. maltophilia</i> c24 decreased when Φc9-N was administered either to the forming biofilm or to the mature biofilm. These results suggest that Φc9-N has application potential in clinical treatment. The genome of Φc9-N is a dsDNA of 43,170 bp with 55 putative unidirectional genes, 18 of which were assigned putative functions, while other genes encoded hypothetical proteins. Genome sequence comparisons and phylogenetic analysis indicated that Φc9-N represents a new species, and, together with the <i>Stenotrophomonas</i> phages BUCT700, BUCT703, BUCT598, and vB_SmaS_P15, can be included in the newly proposed genus “<i>Maltovirus</i>” in the family <i>Autographiviridae</i>.</p></div>","PeriodicalId":8359,"journal":{"name":"Archives of Virology","volume":"169 11","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Virology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00705-024-06148-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stenotrophomonas maltophilia strains are increasingly emerging as multidrug-resistant pathogens. Moreover, S. maltophilia commonly produces biofilms that enhance antibiotic resistance in bacteria. Phages are effective alternative drugs for treating S. maltophilia infections. In this study, the lytic phage vB_SmaP_c9-N (abbreviated as Φc9-N), which is specific for S. maltophilia, was isolated from Nanhu Lake, Wuhan, China. Electron microscopy observation revealed that Φc9-N is a podophage. Φc9-N is stable over a wide pH range, from pH 4 to 10, and its activity did not change after storage at 4 °C for 2 months. The latency period of Φc9-N is 5 min, and its outbreak period is 35 min. Antibacterial tests showed that Φc9-N could effectively inhibit the growth of S. maltophilia c24. Moreover, the biofilm production of S. maltophilia c24 decreased when Φc9-N was administered either to the forming biofilm or to the mature biofilm. These results suggest that Φc9-N has application potential in clinical treatment. The genome of Φc9-N is a dsDNA of 43,170 bp with 55 putative unidirectional genes, 18 of which were assigned putative functions, while other genes encoded hypothetical proteins. Genome sequence comparisons and phylogenetic analysis indicated that Φc9-N represents a new species, and, together with the Stenotrophomonas phages BUCT700, BUCT703, BUCT598, and vB_SmaS_P15, can be included in the newly proposed genus “Maltovirus” in the family Autographiviridae.
期刊介绍:
Archives of Virology publishes original contributions from all branches of research on viruses, virus-like agents, and virus infections of humans, animals, plants, insects, and bacteria. Coverage spans a broad spectrum of topics, from descriptions of newly discovered viruses, to studies of virus structure, composition, and genetics, to studies of virus interactions with host cells, organisms and populations. Studies employ molecular biologic, molecular genetics, and current immunologic and epidemiologic approaches. Contents include studies on the molecular pathogenesis, pathophysiology, and genetics of virus infections in individual hosts, and studies on the molecular epidemiology of virus infections in populations. Also included are studies involving applied research such as diagnostic technology development, monoclonal antibody panel development, vaccine development, and antiviral drug development.Archives of Virology wishes to publish obituaries of recently deceased well-known virologists and leading figures in virology.