Novel eutectogels derived from an ionic-liquid-based deep eutectic solvent as electrolytes for supercapacitors: synthesis and characterization†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Arindam Dutta, Wade Millar, Debbie S. Silvester and Tamal Banerjee
{"title":"Novel eutectogels derived from an ionic-liquid-based deep eutectic solvent as electrolytes for supercapacitors: synthesis and characterization†","authors":"Arindam Dutta, Wade Millar, Debbie S. Silvester and Tamal Banerjee","doi":"10.1039/D4NJ03092C","DOIUrl":null,"url":null,"abstract":"<p >Solid or quasi-solid electrolytes are acclaimed for their ability to overcome limitations associated with liquid electrolytes, while still retaining crucial characteristics of the latter. Particularly within the realm of energy storage, these electrolytes have garnered substantial interest over the past decade. This study presents an investigation into two hybrid eutectogels obtained from the encapsulation of an ionic-liquid-(IL-) based binary deep eutectic solvent (DES) within a solid matrix of titania (TiO<small><sub>2</sub></small>) or silica (SiO<small><sub>2</sub></small>) through a non-aqueous sol–gel route. The DES is prepared by mixing the IL 1-butyl-3-methylimidazolium methanesulfonate ([BMIM][MeSO<small><sub>3</sub></small>]) and <em>N</em>-methylacetamide (NMAc) in a carefully optimized molar ratio of 1 : 2. The properties of the eutectogels are thoroughly examined employing analytical techniques including field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, field emission transmission electron microscopy (FETEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Remarkably, the structural integrity of the DES remains unaltered following its incorporation into the matrices. The eutectogels exhibit a double-layer capacitive behavior within a wide operating potential window (OPW) of 3 V. Specific capacitance and ionic conductivity as high as 16.32 F g<small><sup>−1</sup></small> and 1.27 mS cm<small><sup>−1</sup></small> are obtained at room temperature with specific energy and specific power of 20.39 W h kg<small><sup>−1</sup></small> and 3.31 kW kg<small><sup>−1</sup></small> respectively, thus underscoring their potential utility in applications concerning electrochemical supercapacitors.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj03092c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid or quasi-solid electrolytes are acclaimed for their ability to overcome limitations associated with liquid electrolytes, while still retaining crucial characteristics of the latter. Particularly within the realm of energy storage, these electrolytes have garnered substantial interest over the past decade. This study presents an investigation into two hybrid eutectogels obtained from the encapsulation of an ionic-liquid-(IL-) based binary deep eutectic solvent (DES) within a solid matrix of titania (TiO2) or silica (SiO2) through a non-aqueous sol–gel route. The DES is prepared by mixing the IL 1-butyl-3-methylimidazolium methanesulfonate ([BMIM][MeSO3]) and N-methylacetamide (NMAc) in a carefully optimized molar ratio of 1 : 2. The properties of the eutectogels are thoroughly examined employing analytical techniques including field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, field emission transmission electron microscopy (FETEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Remarkably, the structural integrity of the DES remains unaltered following its incorporation into the matrices. The eutectogels exhibit a double-layer capacitive behavior within a wide operating potential window (OPW) of 3 V. Specific capacitance and ionic conductivity as high as 16.32 F g−1 and 1.27 mS cm−1 are obtained at room temperature with specific energy and specific power of 20.39 W h kg−1 and 3.31 kW kg−1 respectively, thus underscoring their potential utility in applications concerning electrochemical supercapacitors.

Abstract Image

由离子液体型深共晶溶剂衍生的新型共晶凝胶作为超级电容器的电解质:合成与表征†。
固态或准固态电解质因能够克服与液态电解质相关的局限性,同时仍保留后者的关键特性而备受赞誉。特别是在储能领域,这些电解质在过去十年中引起了广泛关注。本研究介绍了通过非水溶胶-凝胶路线,在二氧化钛(TiO2)或二氧化硅(SiO2)固体基质中封装基于离子液体(IL)的二元深共晶溶剂(DES)而获得的两种混合共晶凝胶。这种 DES 是通过将 IL 1-丁基-3-甲基咪唑鎓甲烷磺酸盐([BMIM][MeSO3])和 N-甲基乙酰胺(NMAc)按 1 : 2 的摩尔比混合制备的。利用场发射扫描电子显微镜 (FESEM)、能量色散 X 射线 (EDX) 光谱、场发射透射电子显微镜 (FETEM)、傅立叶变换红外光谱 (FTIR)、拉曼光谱、X 射线衍射 (XRD)、热重分析 (TGA)、循环伏安法 (CV) 和电化学阻抗光谱 (EIS)等分析技术对共晶凝胶的性质进行了深入研究。值得注意的是,DES 的结构完整性在融入基质后保持不变。这些共晶凝胶在 3 V 的宽工作电位窗口 (OPW) 内表现出双层电容特性。在室温下,它们的比电容和离子电导率分别高达 16.32 F g-1 和 1.27 mS cm-1,比能量和比功率分别为 20.39 W h kg-1 和 3.31 kW kg-1,从而凸显了它们在电化学超级电容器应用中的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信