Highly efficient Ru-decorated CeO2 for photocatalytic hydrogenation and cyclization of levulinic acid to γ-valerolactone†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ganesh Sunil More, Rajram Bal and Rajendra Srivastava
{"title":"Highly efficient Ru-decorated CeO2 for photocatalytic hydrogenation and cyclization of levulinic acid to γ-valerolactone†","authors":"Ganesh Sunil More, Rajram Bal and Rajendra Srivastava","doi":"10.1039/D4SE01041H","DOIUrl":null,"url":null,"abstract":"<p >The photocatalytic biomass transformation into valuable chemicals and fuels is interesting but challenging. The levulinic acid (LA) to γ-valerolactone (GVL) transformation has been explored under conventional thermal conditions. Reports on the photocatalytic hydrogenation of LA to GVL are rare, obtaining comprehensive information on the complete reduction process is challenging. Herein, CeO<small><sub>2</sub></small> was synthesized <em>via</em> the hydrothermal method and decorated with varying wt% of Ru to form Ru/CeO<small><sub>2</sub></small>. The physical characteristics of the catalysts were confirmed through PXRD, TEM, and XPS analyses. The light absorption capacity of CeO<small><sub>2</sub></small> and Ru-decorated CeO<small><sub>2</sub></small> (specifically 0.5Ru/CeO<small><sub>2</sub></small> and 1Ru/CeO<small><sub>2</sub></small>) was characterized using UV-visible spectroscopy. Additionally, the band structure of CeO<small><sub>2</sub></small> and 1Ru/CeO<small><sub>2</sub></small> was examined using VB-XPS and UPS analysis. Decorating CeO<small><sub>2</sub></small> with Ru improved charge separation and enhanced visible light absorption capacity. The visible light active 1Ru/CeO<small><sub>2</sub></small> catalyst achieved ∼99% conversion of LA to GVL under 15 W blue LED illumination at 0.2 MPa hydrogen. A mechanistic investigation through control experiments revealed that electrons facilitated the reduction of the ketonic group, while C–O cleavage in the acidic group (–COOH) is by the holes, which forms a carbonyl cation or radical, followed by immediate cyclization to GVL. The findings elucidate the active sites and demonstrate the recyclability of 1Ru/CeO<small><sub>2</sub></small> for selective LA hydrogenation under visible light. The work is significant from a sustainable chemistry perspective and crucial for the sustainable production of valuable chemicals.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 4980-4991"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01041h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The photocatalytic biomass transformation into valuable chemicals and fuels is interesting but challenging. The levulinic acid (LA) to γ-valerolactone (GVL) transformation has been explored under conventional thermal conditions. Reports on the photocatalytic hydrogenation of LA to GVL are rare, obtaining comprehensive information on the complete reduction process is challenging. Herein, CeO2 was synthesized via the hydrothermal method and decorated with varying wt% of Ru to form Ru/CeO2. The physical characteristics of the catalysts were confirmed through PXRD, TEM, and XPS analyses. The light absorption capacity of CeO2 and Ru-decorated CeO2 (specifically 0.5Ru/CeO2 and 1Ru/CeO2) was characterized using UV-visible spectroscopy. Additionally, the band structure of CeO2 and 1Ru/CeO2 was examined using VB-XPS and UPS analysis. Decorating CeO2 with Ru improved charge separation and enhanced visible light absorption capacity. The visible light active 1Ru/CeO2 catalyst achieved ∼99% conversion of LA to GVL under 15 W blue LED illumination at 0.2 MPa hydrogen. A mechanistic investigation through control experiments revealed that electrons facilitated the reduction of the ketonic group, while C–O cleavage in the acidic group (–COOH) is by the holes, which forms a carbonyl cation or radical, followed by immediate cyclization to GVL. The findings elucidate the active sites and demonstrate the recyclability of 1Ru/CeO2 for selective LA hydrogenation under visible light. The work is significant from a sustainable chemistry perspective and crucial for the sustainable production of valuable chemicals.

Abstract Image

用于左旋乙酸光催化加氢和环化成γ-戊内酯的高效Ru装饰CeO2
光催化生物质转化为有价值的化学品和燃料是一项有趣但具有挑战性的工作。在传统的热条件下,人们已经探索了从乙酰丙酸(LA)到γ-戊内酯(GVL)的转化过程。有关光催化氢化 LA 到 GVL 的报道并不多见,要获得完整还原过程的全面信息具有挑战性。本文通过水热法合成了 CeO2,并用不同重量百分比的 Ru 进行装饰,形成了 Ru/CeO2。通过 PXRD、TEM 和 XPS 分析确认了催化剂的物理特性。利用紫外可见光谱分析了 CeO2 和 Ru 装饰的 CeO2(特别是 0.5Ru/CeO2 和 1Ru/CeO2)的光吸收能力。此外,还使用 VB-XPS 和 UPS 分析法研究了 CeO2 和 1Ru/CeO2 的带状结构。用 Ru 对 CeO2 进行装饰可改善电荷分离并增强可见光吸收能力。可见光活性 1Ru/CeO2 催化剂在 0.2 兆帕氢气条件下,在 15 瓦蓝色 LED 灯光照射下,将 LA 转化为 GVL 的转化率达到了 99%。通过对照实验进行的机理研究发现,电子促进了酮基的还原,而酸性基团(-COOH)中的 C-O 则由空穴裂解,形成羰基阳离子或自由基,然后立即环化为 GVL。研究结果阐明了活性位点,并证明了 1Ru/CeO2 在可见光下选择性 LA 加氢的可回收性。从可持续化学的角度来看,这项工作意义重大,对于有价值化学品的可持续生产至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信