Functional Carbon Springs Enabled Dynamic Tunable Microwave Absorption and Thermal Insulation

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ze-Yu Wang, Zhao-Chen Li, Bo Li, An-Feng Shi, Long Zhang, Yin-Bo Zhu, Fang Ye, Shu-Hong Yu
{"title":"Functional Carbon Springs Enabled Dynamic Tunable Microwave Absorption and Thermal Insulation","authors":"Ze-Yu Wang, Zhao-Chen Li, Bo Li, An-Feng Shi, Long Zhang, Yin-Bo Zhu, Fang Ye, Shu-Hong Yu","doi":"10.1002/adma.202412605","DOIUrl":null,"url":null,"abstract":"Electromagnetic (EM) wave pollution and thermal damage pose serious hazards to delicate instruments. Functional aerogels offer a promising solution by mitigating EM interference and isolating heat. However, most of these materials struggle to balance thermal protection with microwave absorption (MA) efficiency due to a previously unidentified conflict between the optimizing strategies of the two properties. Herein, this study reports a solution involving the design of a carbon-based aerogel called functional carbon spring (FCS). Its unique long-range lamellar multi-arch microstructure enables tunable MA performance and excellent thermal insulation capability. Adjusting compression strain from 0% to 50%, the adjustable effective absorption bandwidth (<i>EAB</i>) spans up to 13.4 GHz, covering 84% of the measured frequency spectrum. Notably, at 75% strain, the <i>EAB</i> drops to 0 GHz, demonstrating a novel “on-off” switchability for MA performance. Its ultralow vertical thermal conductivity (12.7 mW m<sup>−1</sup> K<sup>−1</sup>) and unique anisotropic heat transfer mechanism endow FCS with superior thermal protection effectiveness. Numerical simulations demonstrate that FCS outperforms common honeycomb structures and isotropic porous aerogels in thermal management. Furthermore, an “electromagnetic-thermal” dual-protection material database is established, which intuitively demonstrates the superiority of the solution. This work contributes to the advancement of multifunctional MA materials with significant potential for practical applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412605","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electromagnetic (EM) wave pollution and thermal damage pose serious hazards to delicate instruments. Functional aerogels offer a promising solution by mitigating EM interference and isolating heat. However, most of these materials struggle to balance thermal protection with microwave absorption (MA) efficiency due to a previously unidentified conflict between the optimizing strategies of the two properties. Herein, this study reports a solution involving the design of a carbon-based aerogel called functional carbon spring (FCS). Its unique long-range lamellar multi-arch microstructure enables tunable MA performance and excellent thermal insulation capability. Adjusting compression strain from 0% to 50%, the adjustable effective absorption bandwidth (EAB) spans up to 13.4 GHz, covering 84% of the measured frequency spectrum. Notably, at 75% strain, the EAB drops to 0 GHz, demonstrating a novel “on-off” switchability for MA performance. Its ultralow vertical thermal conductivity (12.7 mW m−1 K−1) and unique anisotropic heat transfer mechanism endow FCS with superior thermal protection effectiveness. Numerical simulations demonstrate that FCS outperforms common honeycomb structures and isotropic porous aerogels in thermal management. Furthermore, an “electromagnetic-thermal” dual-protection material database is established, which intuitively demonstrates the superiority of the solution. This work contributes to the advancement of multifunctional MA materials with significant potential for practical applications.

Abstract Image

功能性碳弹簧实现了动态可调微波吸收和隔热功能
电磁波污染和热损伤对精密仪器造成严重危害。功能性气凝胶通过减轻电磁干扰和隔离热量提供了一种很有前景的解决方案。然而,由于微波吸收(MA)和热防护这两种特性的优化策略之间存在冲突,因此大多数此类材料都难以在这两者之间取得平衡。在此,本研究报告了一种解决方案,涉及一种名为功能性碳弹簧(FCS)的碳基气凝胶的设计。其独特的长程层状多拱微结构可实现可调的 MA 性能和出色的隔热能力。将压缩应变从 0% 调整到 50%,可调节的有效吸收带宽(EAB)最高可达 13.4 GHz,覆盖了 84% 的测量频谱。值得注意的是,当压缩应变达到 75% 时,有效吸收带宽会降至 0 GHz,显示出一种新颖的 "开关 "式 MA 性能。超低的垂直热导率(12.7 mW m-1 K-1)和独特的各向异性传热机制使 FCS 具有卓越的热保护效果。数值模拟证明,FCS 在热管理方面优于普通蜂窝结构和各向同性多孔气凝胶。此外,还建立了 "电磁-热 "双重保护材料数据库,直观地证明了该解决方案的优越性。这项工作有助于推动具有巨大实际应用潜力的多功能 MA 材料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信