Thermal Quenching Mechanism of Mn4+ in Na2SiF6, NaKSiF6, and K2SiF6 Phosphors: Insights from the First-Principles Analysis

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Mekhrdod S. Kurboniyon, Alok M. Srivastava, Bibo Lou, Dilshod D. Nematov, Amondulloi Burhonzoda, Tomoyuki Yamamoto, Chong-Geng Ma, Mikhail G. Brik
{"title":"Thermal Quenching Mechanism of Mn4+ in Na2SiF6, NaKSiF6, and K2SiF6 Phosphors: Insights from the First-Principles Analysis","authors":"Mekhrdod S. Kurboniyon, Alok M. Srivastava, Bibo Lou, Dilshod D. Nematov, Amondulloi Burhonzoda, Tomoyuki Yamamoto, Chong-Geng Ma, Mikhail G. Brik","doi":"10.1021/acs.inorgchem.4c03589","DOIUrl":null,"url":null,"abstract":"This study aims to identify the key factors governing the thermal quenching of Mn<sup>4+</sup> ion luminescence in fluoride-based phosphor materials used as red emitters in modern-day phosphor-converted LED devices. Here, we employ first-principles calculations for Mn<sup>4+</sup>-doped Na<sub>2</sub>SiF<sub>6</sub>, NaKSiF<sub>6</sub>, and K<sub>2</sub>SiF<sub>6</sub> hosts to explore how host properties and local coordination environments influence thermal quenching behavior. The ΔSCF method was used to model the geometric structures of the Mn<sup>4+4</sup>A<sub>2</sub> (ground) and <sup>2</sup>E, <sup>4</sup>T<sub>2</sub> (excited) states and the energies of the optical transitions between these states. Our results reveal that thermal quenching in Na<sub>2</sub>SiF<sub>6</sub> and K<sub>2</sub>SiF<sub>6</sub> phosphors occurs through thermally activated <sup>2</sup>E → <sup>4</sup>T<sub>2</sub> → <sup>4</sup>A<sub>2</sub> crossover. In contrast, thermal quenching in NaKSiF<sub>6</sub> is due to other nonradiative decay pathways. Investigations of the mechanical stability of these fluorides show that NaKSiF<sub>6</sub> is mechanically unstable. We suggest that this property of the host limits the luminescence efficiency of the embedded Mn<sup>4+</sup> ions. We also determined the reason for the difference in the intensity of the <sup>2</sup>E → <sup>4</sup>A<sub>2</sub> emission transition (ZPL) in the systems. These findings advance our fundamental understanding of the thermal quenching mechanism of Mn<sup>4+</sup> ion luminescence in fluorides, and the results can aid future discoveries of technologically useful phosphors through high-throughput design methodologies.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c03589","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to identify the key factors governing the thermal quenching of Mn4+ ion luminescence in fluoride-based phosphor materials used as red emitters in modern-day phosphor-converted LED devices. Here, we employ first-principles calculations for Mn4+-doped Na2SiF6, NaKSiF6, and K2SiF6 hosts to explore how host properties and local coordination environments influence thermal quenching behavior. The ΔSCF method was used to model the geometric structures of the Mn4+4A2 (ground) and 2E, 4T2 (excited) states and the energies of the optical transitions between these states. Our results reveal that thermal quenching in Na2SiF6 and K2SiF6 phosphors occurs through thermally activated 2E → 4T24A2 crossover. In contrast, thermal quenching in NaKSiF6 is due to other nonradiative decay pathways. Investigations of the mechanical stability of these fluorides show that NaKSiF6 is mechanically unstable. We suggest that this property of the host limits the luminescence efficiency of the embedded Mn4+ ions. We also determined the reason for the difference in the intensity of the 2E → 4A2 emission transition (ZPL) in the systems. These findings advance our fundamental understanding of the thermal quenching mechanism of Mn4+ ion luminescence in fluorides, and the results can aid future discoveries of technologically useful phosphors through high-throughput design methodologies.

Abstract Image

Na2SiF6、NaKSiF6 和 K2SiF6 荧光中 Mn4+ 的热淬机制:第一原理分析的启示
本研究旨在找出影响氟化物荧光粉材料中 Mn4+ 离子发光热淬灭的关键因素,这些材料被用作现代荧光粉转换 LED 器件中的红色发光体。在此,我们采用第一原理计算掺杂了 Mn4+ 的 Na2SiF6、NaKSiF6 和 K2SiF6 宿主,探索宿主特性和局部配位环境如何影响热淬灭行为。我们采用 ΔSCF 方法来模拟 Mn4+4A2 (基态)和 2E、4T2 (激发态)的几何结构以及这些态之间的光学跃迁能量。我们的研究结果表明,Na2SiF6 和 K2SiF6 荧光中的热淬灭是通过热激活的 2E → 4T2 → 4A2 交叉发生的。与此相反,NaKSiF6 的热淬火是由其他非辐射衰变途径引起的。对这些氟化物机械稳定性的研究表明,NaKSiF6 的机械稳定性并不稳定。我们认为宿主的这一特性限制了嵌入的 Mn4+ 离子的发光效率。我们还确定了系统中 2E → 4A2 发射转变(ZPL)强度不同的原因。这些发现推进了我们对氟化物中 Mn4+ 离子发光的热淬灭机制的基本理解,其结果有助于未来通过高通量设计方法发现技术上有用的荧光粉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信