Mechanical stimulation promotes fibrochondrocyte proliferation by activating the TRPV4 signaling pathway during tendon–bone insertion healing: CCN2 plays an important regulatory role
Xuting Bian, Xiao Liu, Mei Zhou, Hong Tang, Rui Wang, Lin Ma, Gang He, Shibo Xu, Yunjiao Wang, Jindong Tan, Kanglai Tang, Lin Guo
{"title":"Mechanical stimulation promotes fibrochondrocyte proliferation by activating the TRPV4 signaling pathway during tendon–bone insertion healing: CCN2 plays an important regulatory role","authors":"Xuting Bian, Xiao Liu, Mei Zhou, Hong Tang, Rui Wang, Lin Ma, Gang He, Shibo Xu, Yunjiao Wang, Jindong Tan, Kanglai Tang, Lin Guo","doi":"10.1093/burnst/tkae028","DOIUrl":null,"url":null,"abstract":"Background We previously confirmed that mechanical stimulation is an important factor in the repair of tendon–bone insertion (TBI) injuries and that mechanoreceptors such as transient receptor potential ion-channel subfamily V member 4 (TRPV4; also known as transient receptor potential vanilloid 4) are key to transforming mechanical stimulation into intracellular biochemical signals. This study aims to elucidate the mechanism of mechanical stimulation regulating TRPV4. Methods Immunohistochemical staining and western blotting were used to evaluate cartilage repair at the TBI after injury. The RNA expression and protein expression of mechanoreceptors and key pathway molecules regulating cartilage proliferation were analyzed. TBI samples were collected for transcriptome sequencing to detect gene expression. Calcium-ion imaging and flow cytometry were used to evaluate the function of TPRV4 and cellular communication network factor 2 (CCN2) after the administration of siRNA, recombinant adenovirus and agonists. Results We found that treadmill training improved the quality of TBI healing and enhanced fibrochondrocyte proliferation. The transcriptome sequencing results suggested that the elevated expression of the mechanistically stimulated regulator CCN2 and the exogenous administration of recombinant human CCN2 significantly promoted TRPV4 protein expression and fibrochondrocyte proliferation. In vitro, under mechanical stimulation conditions, small interfering RNA (siRNA)-CCN2 not only inhibited the proliferation of primary fibrochondrocytes but also suppressed TRPV4 protein expression and activity. Subsequently, primary fibrochondrocytes were treated with the TRPV4 agonist GSK1016790A and the recombinant adenovirus TRPV4 (Ad-TRPV4), and GSK1016790A partially reversed the inhibitory effect of siRNA-CCN2. The phosphoinositide 3-kinase/ protein kinase B (PI3K/AKT) signaling pathway participated in the above process. Conclusions Mechanical stimulation promoted fibrochondrocyte proliferation and TBI healing by activating TRPV4 channels and the PI3K/AKT signaling pathway, and CCN2 may be a key regulatory protein in maintaining TRPV4 activation.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"1 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkae028","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background We previously confirmed that mechanical stimulation is an important factor in the repair of tendon–bone insertion (TBI) injuries and that mechanoreceptors such as transient receptor potential ion-channel subfamily V member 4 (TRPV4; also known as transient receptor potential vanilloid 4) are key to transforming mechanical stimulation into intracellular biochemical signals. This study aims to elucidate the mechanism of mechanical stimulation regulating TRPV4. Methods Immunohistochemical staining and western blotting were used to evaluate cartilage repair at the TBI after injury. The RNA expression and protein expression of mechanoreceptors and key pathway molecules regulating cartilage proliferation were analyzed. TBI samples were collected for transcriptome sequencing to detect gene expression. Calcium-ion imaging and flow cytometry were used to evaluate the function of TPRV4 and cellular communication network factor 2 (CCN2) after the administration of siRNA, recombinant adenovirus and agonists. Results We found that treadmill training improved the quality of TBI healing and enhanced fibrochondrocyte proliferation. The transcriptome sequencing results suggested that the elevated expression of the mechanistically stimulated regulator CCN2 and the exogenous administration of recombinant human CCN2 significantly promoted TRPV4 protein expression and fibrochondrocyte proliferation. In vitro, under mechanical stimulation conditions, small interfering RNA (siRNA)-CCN2 not only inhibited the proliferation of primary fibrochondrocytes but also suppressed TRPV4 protein expression and activity. Subsequently, primary fibrochondrocytes were treated with the TRPV4 agonist GSK1016790A and the recombinant adenovirus TRPV4 (Ad-TRPV4), and GSK1016790A partially reversed the inhibitory effect of siRNA-CCN2. The phosphoinositide 3-kinase/ protein kinase B (PI3K/AKT) signaling pathway participated in the above process. Conclusions Mechanical stimulation promoted fibrochondrocyte proliferation and TBI healing by activating TRPV4 channels and the PI3K/AKT signaling pathway, and CCN2 may be a key regulatory protein in maintaining TRPV4 activation.
期刊介绍:
The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.