Research on the Mechanism of Femtosecond Laser Ablation Concave-Convex Microstructure Transformation

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jinkui Cao, Baoji Ma, Liangliang Li, Xiangyu Li, Chaopeng Xu, Xinbo Wang
{"title":"Research on the Mechanism of Femtosecond Laser Ablation Concave-Convex Microstructure Transformation","authors":"Jinkui Cao, Baoji Ma, Liangliang Li, Xiangyu Li, Chaopeng Xu, Xinbo Wang","doi":"10.1021/acs.langmuir.4c02455","DOIUrl":null,"url":null,"abstract":"The phenomenon of femtosecond laser ablation of convex structures from the bottom to the top is interesting. In this study, AZ31B magnesium alloy was used as the substrate to analyze the impact of the laser pulse energy and scanning speed on the morphology of concave-convex microstructures. Subsequently, a unified two-dimensional numerical model incorporating solid, liquid, and gas phases was established, and combined with experimental data, the mechanism and formation process of concave-convex transformation in magnesium alloy under laser ablation were revealed. The results indicate that the transition from concave to convex structures is significantly influenced by the laser scanning speed, whereas the laser pulse energy primarily affects the shape and size of the convex structures. During the ablation process, molten material is expelled and gradually accumulates on both sides of the ablation groove under the action of the recoil pressure. During cooling, the molten material at both ends of the groove merges to form protrusions under the combined effects of internal negative pressure, gravity, and Marangoni forces. Moreover, this method of femtosecond laser ablation for generating convex structures deviates from the traditional single-texture approach to concave structures, potentially broadening the application of laser composite processing surfaces.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02455","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The phenomenon of femtosecond laser ablation of convex structures from the bottom to the top is interesting. In this study, AZ31B magnesium alloy was used as the substrate to analyze the impact of the laser pulse energy and scanning speed on the morphology of concave-convex microstructures. Subsequently, a unified two-dimensional numerical model incorporating solid, liquid, and gas phases was established, and combined with experimental data, the mechanism and formation process of concave-convex transformation in magnesium alloy under laser ablation were revealed. The results indicate that the transition from concave to convex structures is significantly influenced by the laser scanning speed, whereas the laser pulse energy primarily affects the shape and size of the convex structures. During the ablation process, molten material is expelled and gradually accumulates on both sides of the ablation groove under the action of the recoil pressure. During cooling, the molten material at both ends of the groove merges to form protrusions under the combined effects of internal negative pressure, gravity, and Marangoni forces. Moreover, this method of femtosecond laser ablation for generating convex structures deviates from the traditional single-texture approach to concave structures, potentially broadening the application of laser composite processing surfaces.

Abstract Image

飞秒激光烧蚀凹凸微结构转变机理研究
飞秒激光由下至上烧蚀凹凸结构的现象非常有趣。本研究以 AZ31B 镁合金为基底,分析了激光脉冲能量和扫描速度对凹凸微结构形态的影响。随后,建立了包含固相、液相和气相的统一二维数值模型,并结合实验数据,揭示了激光烧蚀作用下镁合金凹凸转变的机理和形成过程。结果表明,凹凸结构的转变受激光扫描速度的影响较大,而激光脉冲能量则主要影响凸结构的形状和大小。在烧蚀过程中,熔融材料被排出,并在反冲压力的作用下逐渐积聚在烧蚀槽的两侧。冷却过程中,在内部负压、重力和马兰戈尼力的共同作用下,凹槽两端的熔融材料合并形成凸起。此外,这种飞秒激光烧蚀生成凸状结构的方法偏离了传统的单一纹理凹状结构的方法,有可能拓宽激光复合加工表面的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信