{"title":"A unified local projection-based stabilized virtual element method for the coupled Stokes-Darcy problem","authors":"Sudheer Mishra, E. Natarajan","doi":"10.1007/s10444-024-10199-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we propose and analyze a new stabilized virtual element method for the coupled Stokes-Darcy problem with Beavers-Joseph-Saffman interface condition on polygonal meshes. We derive two variants of local projection stabilization methods for the coupled Stokes-Darcy problem. The significance of local projection-based stabilization terms is that they provide reasonable control of the pressure component of the Stokes flow without involving higher-order derivative terms. The discrete inf-sup condition of the coupled Stokes-Darcy problem is established for the equal-order virtual element triplets involving velocity, hydraulic head, and pressure. The optimal error estimates are derived using the equal-order virtual elements in the energy and <span>\\(L^2\\)</span> norms. The proposed methods have several advantages: mass conservative, avoiding the coupling of the solution components, more accessible to implement, and performing efficiently on hybrid polygonal elements. Numerical experiments are conducted to depict the flexibility of the proposed methods, validating the theoretical results.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10199-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose and analyze a new stabilized virtual element method for the coupled Stokes-Darcy problem with Beavers-Joseph-Saffman interface condition on polygonal meshes. We derive two variants of local projection stabilization methods for the coupled Stokes-Darcy problem. The significance of local projection-based stabilization terms is that they provide reasonable control of the pressure component of the Stokes flow without involving higher-order derivative terms. The discrete inf-sup condition of the coupled Stokes-Darcy problem is established for the equal-order virtual element triplets involving velocity, hydraulic head, and pressure. The optimal error estimates are derived using the equal-order virtual elements in the energy and \(L^2\) norms. The proposed methods have several advantages: mass conservative, avoiding the coupling of the solution components, more accessible to implement, and performing efficiently on hybrid polygonal elements. Numerical experiments are conducted to depict the flexibility of the proposed methods, validating the theoretical results.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.