Elevated CO2 Concentration Enhances Drought Tolerance by Mitigating Oxidative Stress and Enhancing Carbon Assimilation in Foxtail Millet (Setaria italica)
{"title":"Elevated CO2 Concentration Enhances Drought Tolerance by Mitigating Oxidative Stress and Enhancing Carbon Assimilation in Foxtail Millet (Setaria italica)","authors":"Xiaoqin Zhang, Yuqian Duan, Qijun Xing, Ruonan Duan, Jie Shen, Yuzheng Zong, Dongsheng Zhang, Xinrui Shi, Ping Li, Xingyu Hao","doi":"10.1111/jac.12778","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Elevated CO<sub>2</sub> concentration (<i>e</i>CO<sub>2</sub>) can modulate the response of crop plants to drought stress (DS). This study aimed to investigate the response of leaf gas exchange, chlorophyll fluorescence, antioxidant activities, osmotic adjustment substance, phytohormone and signal transduction regulatory enzymes, as well as related genes in foxtail millet to DS (water stress for 10 days), ambient condition (<i>a</i>CO<sub>2</sub>, 400 μmol mol<sup>−1</sup>) and <i>e</i>CO<sub>2</sub> (600 μmol mol<sup>−1</sup>). <i>e</i>CO<sub>2</sub> significantly increased the net photosynthetic rate, maximum net photosynthetic rate, chlorophyll a content, transpiration rate and stomatal conductance, but did not affect leaf instantaneous water-use efficiency under DS. <i>e</i>CO<sub>2</sub> also significantly enhanced the quantum yield of Photosystem II (PSII), photosynthetic electron transport, and proportion of open PSII reaction centers under DS. Moreover, <i>e</i>CO<sub>2</sub> significantly increased abscisic acid (ABA) content, proline content, and the activities of peroxidase, superoxide dismutase, and calcium-dependent protein kinase under DS, leading to a significant reduction in malondialdehyde content. <i>e</i>CO<sub>2</sub> significantly increased the expressions of gene encoding ABA-, stress- and ripening-induced proteins and ABA-responsive element binding factor under DS. Our results clearly demonstrated the vital role of <i>e</i>CO<sub>2</sub> in mitigating the drought-induced damage over ambient CO<sub>2</sub> grown foxtail millet.</p>\n </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.12778","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Elevated CO2 concentration (eCO2) can modulate the response of crop plants to drought stress (DS). This study aimed to investigate the response of leaf gas exchange, chlorophyll fluorescence, antioxidant activities, osmotic adjustment substance, phytohormone and signal transduction regulatory enzymes, as well as related genes in foxtail millet to DS (water stress for 10 days), ambient condition (aCO2, 400 μmol mol−1) and eCO2 (600 μmol mol−1). eCO2 significantly increased the net photosynthetic rate, maximum net photosynthetic rate, chlorophyll a content, transpiration rate and stomatal conductance, but did not affect leaf instantaneous water-use efficiency under DS. eCO2 also significantly enhanced the quantum yield of Photosystem II (PSII), photosynthetic electron transport, and proportion of open PSII reaction centers under DS. Moreover, eCO2 significantly increased abscisic acid (ABA) content, proline content, and the activities of peroxidase, superoxide dismutase, and calcium-dependent protein kinase under DS, leading to a significant reduction in malondialdehyde content. eCO2 significantly increased the expressions of gene encoding ABA-, stress- and ripening-induced proteins and ABA-responsive element binding factor under DS. Our results clearly demonstrated the vital role of eCO2 in mitigating the drought-induced damage over ambient CO2 grown foxtail millet.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.