G. John , T. Susikumar , M. Navaneethan , P. Justin Jesuraj
{"title":"Intercalation of g-C3N4/Ag2S heterostructure on boronized Ni-MOF for enhanced water splitting and energy storage applications","authors":"G. John , T. Susikumar , M. Navaneethan , P. Justin Jesuraj","doi":"10.1016/j.electacta.2024.145258","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing global demand for energy conversion and storage technologies including water electrolysis, fuel cells, batteries & supercapacitors depend critically on the performance of their electrode components. Metal Organic Frameworks (MOFs), particularly Nickel Zeolite Imidazole Frameworks (Ni-ZIF) have drawn significant attention due to their greater electrocatalytic performance. Still, their restricted active sites & stability hinder their broader implementation in alkaline/saline water electrolysis & supercapacitor applications. Here, we are reporting the intercalation of heterostructure consisting of silver sulfide (Ag<sub>2</sub>S)/graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) on Boronized Ni-ZIF (B:NZ) for empowered alkaline/saline water splitting and supercapacitor applications. These heterostructure addition over Boronized Ni-ZIF demonstrated minimal overpotentials for the oxygen evolution reaction (OER) (324 mV at 10.0 mA cm<sup>-2</sup>) and the hydrogen evolution reaction (HER) (78 mV at 10.0 mA cm<sup>-2</sup>) in alkaline medium (1 M KOH). The observed improvement in activity is ascribed to the decreased charge transfer resistance (R<sub>ct</sub>) & the augmented electrochemical active surface area (ECSA). Furthermore, Ag<sub>2</sub>S/g-C<sub>3</sub>N<sub>4</sub>/Boronized Ni-ZIF exhibited high specific capacitances of 1076.6 F/g and areal capacitance of 2584 F/cm<sup>2</sup> at 0.50 A g<sup>-1</sup> in supercapacitor applications. The incorporation of the g-C<sub>3</sub>N<sub>4</sub> layer has enhanced the surface area and roughness facilitating stronger adhesion between hybrid layers which in turn resulted in prolonged stability exceeding 20 h in water splitting and 86 % retention in supercapacitor application.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"508 ","pages":"Article 145258"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624014944","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing global demand for energy conversion and storage technologies including water electrolysis, fuel cells, batteries & supercapacitors depend critically on the performance of their electrode components. Metal Organic Frameworks (MOFs), particularly Nickel Zeolite Imidazole Frameworks (Ni-ZIF) have drawn significant attention due to their greater electrocatalytic performance. Still, their restricted active sites & stability hinder their broader implementation in alkaline/saline water electrolysis & supercapacitor applications. Here, we are reporting the intercalation of heterostructure consisting of silver sulfide (Ag2S)/graphitic carbon nitride (g-C3N4) on Boronized Ni-ZIF (B:NZ) for empowered alkaline/saline water splitting and supercapacitor applications. These heterostructure addition over Boronized Ni-ZIF demonstrated minimal overpotentials for the oxygen evolution reaction (OER) (324 mV at 10.0 mA cm-2) and the hydrogen evolution reaction (HER) (78 mV at 10.0 mA cm-2) in alkaline medium (1 M KOH). The observed improvement in activity is ascribed to the decreased charge transfer resistance (Rct) & the augmented electrochemical active surface area (ECSA). Furthermore, Ag2S/g-C3N4/Boronized Ni-ZIF exhibited high specific capacitances of 1076.6 F/g and areal capacitance of 2584 F/cm2 at 0.50 A g-1 in supercapacitor applications. The incorporation of the g-C3N4 layer has enhanced the surface area and roughness facilitating stronger adhesion between hybrid layers which in turn resulted in prolonged stability exceeding 20 h in water splitting and 86 % retention in supercapacitor application.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.