Adaeze P. Uchendu, Eric K. Omogbai, Philip A. Obarisiagbon, Uyi G. Omogiade, Enitome E. Bafor
{"title":"Chlorophyll Derivatives Exert Greater Potency Over Progesterone in the Prevention of Infection-Induced Preterm Birth in Murine Models","authors":"Adaeze P. Uchendu, Eric K. Omogbai, Philip A. Obarisiagbon, Uyi G. Omogiade, Enitome E. Bafor","doi":"10.1111/aji.70000","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Problem</h3>\n \n <p>Preterm birth (PTB) is a significant cause of maternal and neonatal morbidity and mortality worldwide. However, the effectiveness of progesterone (P4) which is clinically used for PTB management remains controversial and necessitates research into new therapeutic options</p>\n </section>\n \n <section>\n \n <h3> Method of Study</h3>\n \n <p>In the current study, we investigated the effectiveness of two chlorophyll derivatives, pheophorbide a (PBa) and pheophytin a (PTa), in counteracting PTB. Timed-pregnant mice (gestation day 17 ± 0.5) received lipopolysaccharide (LPS) (25 µg/mouse) or phosphate-buffered saline (PBS) intraperitoneally, with PBa, PTa, progesterone (P4), and co-administration of P4 and ibuprofen (IBP), administered orally 2 h prior.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The LPS group experienced PTB and 100% fetal mortality, whereas the PBa and PTa groups showed a delayed onset of LPS-induced PTB, with significantly decreased PTB rate and fetal mortality. In addition, PBa and PTa suppressed LPS-induced pro-inflammatory cytokines and NF-κB transcription factor while increasing anti-inflammatory cytokines in the placenta and uterus.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our findings indicate that the chlorophyll derivatives, PBa and PTa increase fetal survival in infection-induced PTB and demonstrate greater efficacy than P4 in preventing PTB.</p>\n </section>\n </div>","PeriodicalId":7665,"journal":{"name":"American Journal of Reproductive Immunology","volume":"92 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Reproductive Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aji.70000","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Problem
Preterm birth (PTB) is a significant cause of maternal and neonatal morbidity and mortality worldwide. However, the effectiveness of progesterone (P4) which is clinically used for PTB management remains controversial and necessitates research into new therapeutic options
Method of Study
In the current study, we investigated the effectiveness of two chlorophyll derivatives, pheophorbide a (PBa) and pheophytin a (PTa), in counteracting PTB. Timed-pregnant mice (gestation day 17 ± 0.5) received lipopolysaccharide (LPS) (25 µg/mouse) or phosphate-buffered saline (PBS) intraperitoneally, with PBa, PTa, progesterone (P4), and co-administration of P4 and ibuprofen (IBP), administered orally 2 h prior.
Results
The LPS group experienced PTB and 100% fetal mortality, whereas the PBa and PTa groups showed a delayed onset of LPS-induced PTB, with significantly decreased PTB rate and fetal mortality. In addition, PBa and PTa suppressed LPS-induced pro-inflammatory cytokines and NF-κB transcription factor while increasing anti-inflammatory cytokines in the placenta and uterus.
Conclusions
Our findings indicate that the chlorophyll derivatives, PBa and PTa increase fetal survival in infection-induced PTB and demonstrate greater efficacy than P4 in preventing PTB.
期刊介绍:
The American Journal of Reproductive Immunology is an international journal devoted to the presentation of current information in all areas relating to Reproductive Immunology. The journal is directed toward both the basic scientist and the clinician, covering the whole process of reproduction as affected by immunological processes. The journal covers a variety of subspecialty topics, including fertility immunology, pregnancy immunology, immunogenetics, mucosal immunology, immunocontraception, endometriosis, abortion, tumor immunology of the reproductive tract, autoantibodies, infectious disease of the reproductive tract, and technical news.