{"title":"Environmental factors driving infestations of a keystone winter fruit by an invasive and a native fruit fly","authors":"Gwenaëlle Deconninck, Méghan Boulembert, Patrice Eslin, Aude Couty, Anne Bonis, Nicolas Borowiec, Inessa Buch, Hervé Colinet, Lionel Delbac, Françoise Dubois, Vincent Foray, Emilie Gallet-Moron, Servane Lemauviel-Lavenant, Stéphanie Llopis, Jean-Francois Odoux, Sylvain Pincebourde, Marcel Thaon, Irène Till-Bottraud, Olivier Chabrerie","doi":"10.1007/s11829-024-10073-6","DOIUrl":null,"url":null,"abstract":"<div><p>In temperate regions, most insect species overwinter in diapause while others continue to be active, feed, and possibly reproduce despite adverse climatic conditions. For fruit flies which remain active winter long, the presence of winter-available fruit is crucial for population persistence. This study aimed to disentangle the relative effects of climatic, landscape, and local factors on infestation rates of an important winter trophic resource, mistletoe (<i>Viscum album</i>) fruit, by drosophilid flies<i>.</i> Mistletoe fruits were sampled between January and July 2022 in seven regions of France, across a wide range of climatic conditions from Mediterranean to temperate oceanic. The fruits were used both by the invasive <i>Drosophila suzukii</i> and by the native <i>D. subobscura</i> in the latter part of winter and throughout spring, suggesting that this resource may assist these species to overcome the winter bottleneck. Infestations by both flies were positively associated with the presence of fallen mistletoe fruit on the ground and semi-natural (forest, hedgerow) and anthropogenic (garden, park) habitats. The mistletoe’s host tree species also influenced the fruit infestation rate. <i>Drosophila suzukii</i> infestation rate was positively impacted by the accumulated thermal energy (‘degree days’) in the previous 14 days. Mistletoe could act as a catalyst for the development of spring <i>D. suzukii</i> generations and should be considered in the context of integrative pest management strategies to prevent early infestation of crop fruit.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8409,"journal":{"name":"Arthropod-Plant Interactions","volume":"18 5","pages":"867 - 880"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod-Plant Interactions","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11829-024-10073-6","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In temperate regions, most insect species overwinter in diapause while others continue to be active, feed, and possibly reproduce despite adverse climatic conditions. For fruit flies which remain active winter long, the presence of winter-available fruit is crucial for population persistence. This study aimed to disentangle the relative effects of climatic, landscape, and local factors on infestation rates of an important winter trophic resource, mistletoe (Viscum album) fruit, by drosophilid flies. Mistletoe fruits were sampled between January and July 2022 in seven regions of France, across a wide range of climatic conditions from Mediterranean to temperate oceanic. The fruits were used both by the invasive Drosophila suzukii and by the native D. subobscura in the latter part of winter and throughout spring, suggesting that this resource may assist these species to overcome the winter bottleneck. Infestations by both flies were positively associated with the presence of fallen mistletoe fruit on the ground and semi-natural (forest, hedgerow) and anthropogenic (garden, park) habitats. The mistletoe’s host tree species also influenced the fruit infestation rate. Drosophila suzukii infestation rate was positively impacted by the accumulated thermal energy (‘degree days’) in the previous 14 days. Mistletoe could act as a catalyst for the development of spring D. suzukii generations and should be considered in the context of integrative pest management strategies to prevent early infestation of crop fruit.
期刊介绍:
Arthropod-Plant Interactions is dedicated to publishing high quality original papers and reviews with a broad fundamental or applied focus on ecological, biological, and evolutionary aspects of the interactions between insects and other arthropods with plants. Coverage extends to all aspects of such interactions including chemical, biochemical, genetic, and molecular analysis, as well reporting on multitrophic studies, ecophysiology, and mutualism.
Arthropod-Plant Interactions encourages the submission of forum papers that challenge prevailing hypotheses. The journal encourages a diversity of opinion by presenting both invited and unsolicited review papers.