Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln
{"title":"Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln","authors":"Ludwig Bothmann, Kristina Peters","doi":"10.1007/s11943-024-00346-0","DOIUrl":null,"url":null,"abstract":"<p>Mit der verstärkten Nutzung von Modellen des Maschinellen Lernens (ML) innerhalb von Systemen der automatisierten Entscheidungsfindung wachsen die Anforderungen an die Qualität von ML-Modellen. Die reine Prognosegüte ist nicht länger das alleinige Qualitätskriterium; insbesondere wird vermehrt gefordert, dass Fairnessaspekte berücksichtigt werden. Dieser Beitrag verfolgt zwei Ziele. Zum einen werden die aktuelle Fairnessdiskussion im Bereich ML (fairML) zusammengefasst und die aktuellsten Entwicklungen, insbesondere in Bezug auf die philosophischen Grundlagen des Fairnessbegriffs innerhalb ML, beschrieben. Zum anderen wird die Frage behandelt, inwiefern sogenannte „außergesetzliche“ Merkmale bei der Erstellung qualifizierter Mietspiegel genutzt werden dürfen. Ein aktueller Vorschlag von Kauermann und Windmann (AStA Wirtschafts- und Sozialstatistisches Archiv, Band 17, 2023) zur Nutzung außergesetzlicher Merkmale in qualifizierten Mietspiegeln beinhaltet eine modellbasierte Imputationsmethode, welche wir den gesetzlichen Anforderungen gegenüberstellen. Schließlich zeigen wir auf, welche Alternativen aus dem Bereich fairML genutzt werden könnten und legen dar, welche unterschiedlichen philosophischen Grundannahmen hinter den verschiedenen Verfahren stehen.</p>","PeriodicalId":100134,"journal":{"name":"AStA Wirtschafts- und Sozialstatistisches Archiv","volume":"18 2","pages":"185 - 201"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11943-024-00346-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AStA Wirtschafts- und Sozialstatistisches Archiv","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11943-024-00346-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mit der verstärkten Nutzung von Modellen des Maschinellen Lernens (ML) innerhalb von Systemen der automatisierten Entscheidungsfindung wachsen die Anforderungen an die Qualität von ML-Modellen. Die reine Prognosegüte ist nicht länger das alleinige Qualitätskriterium; insbesondere wird vermehrt gefordert, dass Fairnessaspekte berücksichtigt werden. Dieser Beitrag verfolgt zwei Ziele. Zum einen werden die aktuelle Fairnessdiskussion im Bereich ML (fairML) zusammengefasst und die aktuellsten Entwicklungen, insbesondere in Bezug auf die philosophischen Grundlagen des Fairnessbegriffs innerhalb ML, beschrieben. Zum anderen wird die Frage behandelt, inwiefern sogenannte „außergesetzliche“ Merkmale bei der Erstellung qualifizierter Mietspiegel genutzt werden dürfen. Ein aktueller Vorschlag von Kauermann und Windmann (AStA Wirtschafts- und Sozialstatistisches Archiv, Band 17, 2023) zur Nutzung außergesetzlicher Merkmale in qualifizierten Mietspiegeln beinhaltet eine modellbasierte Imputationsmethode, welche wir den gesetzlichen Anforderungen gegenüberstellen. Schließlich zeigen wir auf, welche Alternativen aus dem Bereich fairML genutzt werden könnten und legen dar, welche unterschiedlichen philosophischen Grundannahmen hinter den verschiedenen Verfahren stehen.
随着机器学习(ML)模型在自动决策系统中的使用越来越多,对 ML 模型质量的要求也越来越高。纯粹的预测质量不再是唯一的质量标准,尤其是对公平性方面的要求越来越高。本文有两个目的。首先,它总结了当前有关 ML(fairML)领域公平性的讨论,并描述了最新发展,特别是有关 ML 中公平性概念的哲学基础。其次,讨论了在编制合格租金指数时可以在多大程度上使用所谓 "法律外 "特征的问题。考尔曼和温德曼(AStA Wirtschafts- und Sozialstatistisches Archiv,第 17 卷,2023 年)目前提出的关于在限定租金指数中使用非法定特征的建议包括一种基于模型的估算方法,我们将其与法定要求进行了比较。最后,我们说明了可以使用公平估算法中的哪些替代方法,并解释了各种方法背后不同的基本哲学假设。