Guimin Zhou, Peng Wang, Zengmou Li, Yin Li, Yaochun Yao
{"title":"Revealing electrochemical performance of Ni doping LiFePO4 composite","authors":"Guimin Zhou, Peng Wang, Zengmou Li, Yin Li, Yaochun Yao","doi":"10.1007/s12034-024-03295-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, Ni<sup>2+</sup> was doped into the crystal lattice of LiFePO<sub>4</sub> to improve the electrochemical performance. Lengths of the Li–O bonds in LiFe<sub>0.98</sub>Ni<sub>0.02</sub>PO<sub>4</sub>/C (2% NiSO<sub>4</sub>-doped LiFePO<sub>4</sub>) is longer than that of the bare LiFePO<sub>4</sub> sample, the micromorphology of LiFe<sub>0.98</sub>Ni<sub>0.02</sub>PO<sub>4</sub>/C sample becomes uniform, and the Ni<sup>2+</sup> doped into LiFePO4 expands the crystal plane spacing, which is conducive to Li<sup>+</sup> diffusion. Amongst all the doped samples, the Li<sup>+</sup> diffusion coefffcient of LiFe<sub>0.98</sub>Ni<sub>0.02</sub>PO<sub>4</sub>/C is the largest, and the redox peak of LiFe<sub>0.98</sub>Ni<sub>0.02</sub>PO<sub>4</sub>/C is more symmetrical, sharper and narrower, indicating that the proper amount of Ni<sup>2+-</sup>modified LiFePO<sub>4</sub> can improve the electrochemical performance. Specific discharge capacity at 1C is 152 mAh g<sup>−1</sup> when the doping amount is 2%. Additionally, after 200 cycles at 2C, the discharge specific capacity can be attained at 140 mAh g<sup>−1</sup> and capacity retention rate reached 98%.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03295-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, Ni2+ was doped into the crystal lattice of LiFePO4 to improve the electrochemical performance. Lengths of the Li–O bonds in LiFe0.98Ni0.02PO4/C (2% NiSO4-doped LiFePO4) is longer than that of the bare LiFePO4 sample, the micromorphology of LiFe0.98Ni0.02PO4/C sample becomes uniform, and the Ni2+ doped into LiFePO4 expands the crystal plane spacing, which is conducive to Li+ diffusion. Amongst all the doped samples, the Li+ diffusion coefffcient of LiFe0.98Ni0.02PO4/C is the largest, and the redox peak of LiFe0.98Ni0.02PO4/C is more symmetrical, sharper and narrower, indicating that the proper amount of Ni2+-modified LiFePO4 can improve the electrochemical performance. Specific discharge capacity at 1C is 152 mAh g−1 when the doping amount is 2%. Additionally, after 200 cycles at 2C, the discharge specific capacity can be attained at 140 mAh g−1 and capacity retention rate reached 98%.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.