Amal M. Alkhudaydi, Ekram Y. Danish, Eder Claudio Lima, M.A. Gabal, Mohamed Abdel Salam
{"title":"Photocatalytic degradation of malachite Green dye using Ti3C2 MXene nanosheets decorated with Fe3O4 NPs under visible light irradiation","authors":"Amal M. Alkhudaydi, Ekram Y. Danish, Eder Claudio Lima, M.A. Gabal, Mohamed Abdel Salam","doi":"10.1007/s11164-024-05415-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, a novel Fe<sub>3</sub>O<sub>4</sub>@Ti<sub>3</sub>C<sub>2</sub> MXene nanocomposite was prepared by a simple ultrasonic method by combining Ti<sub>3</sub>C<sub>2</sub> MXene and Fe<sub>3</sub>O<sub>4</sub> nanoparticles, and was used for the remediation of malachite green (MG) dye, as an example of an organic pollutant, from the environment through photocatalytic degradation under visible light irradiation. A wide variety of techniques were used to characterize the synthesized Fe<sub>3</sub>O<sub>4</sub>@Ti<sub>3</sub>C<sub>2</sub> MXene nanohybrid, including X-ray diffraction analysis (XRD), surface area analysis, scanning and transmission electron microscopy (SEM and TEM), and Fourier transform infrared spectroscopy (FTIR) in addition to the optical properties and band gap analysis. The results showed that the Ti<sub>3</sub>AlC<sub>2</sub> MAX phase’s Al layer was successfully selectively etched, resulting in the two-dimensional layered Ti<sub>3</sub>C<sub>2</sub> MXene (average diameter of 78 nm). Additionally, the results revealed the preparation of the cubic Fe<sub>3</sub>O<sub>4</sub> phase (average particle size of 11 nm), which was distributed homogeneously on the Ti<sub>3</sub>C<sub>2</sub> MXene surface, as indicated by XRD, SEM, and TEM analysis. Moreover, the Fe<sub>3</sub>O<sub>4</sub>@Ti<sub>3</sub>C<sub>2</sub> MXene nanophotocatalyst exhibits good visible light absorption ability under visible light (> 420 nm) due to its huge surface area, excellent conductivity, and sufficient quantity of active sites, and the accessibility of all elements required for effective photocatalysis. Accordingly, under 300 min of visible light exposure, the Fe<sub>3</sub>O<sub>4</sub>@Ti<sub>3</sub>C<sub>2</sub> MXene nanophotocatalyst successfully photodegraded MG dye more efficiently than the pure MXene with a removal percentage of 95.4% with 0.5 g/L loading. Overall, the current study has shown that the Fe<sub>3</sub>O<sub>4</sub>@Ti<sub>3</sub>C<sub>2</sub> MXene nanophotocatalyst has the potential to be a valuable photocatalyst for exceptionally efficient wastewater treatment applications.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 11","pages":"5117 - 5135"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-024-05415-1","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, a novel Fe3O4@Ti3C2 MXene nanocomposite was prepared by a simple ultrasonic method by combining Ti3C2 MXene and Fe3O4 nanoparticles, and was used for the remediation of malachite green (MG) dye, as an example of an organic pollutant, from the environment through photocatalytic degradation under visible light irradiation. A wide variety of techniques were used to characterize the synthesized Fe3O4@Ti3C2 MXene nanohybrid, including X-ray diffraction analysis (XRD), surface area analysis, scanning and transmission electron microscopy (SEM and TEM), and Fourier transform infrared spectroscopy (FTIR) in addition to the optical properties and band gap analysis. The results showed that the Ti3AlC2 MAX phase’s Al layer was successfully selectively etched, resulting in the two-dimensional layered Ti3C2 MXene (average diameter of 78 nm). Additionally, the results revealed the preparation of the cubic Fe3O4 phase (average particle size of 11 nm), which was distributed homogeneously on the Ti3C2 MXene surface, as indicated by XRD, SEM, and TEM analysis. Moreover, the Fe3O4@Ti3C2 MXene nanophotocatalyst exhibits good visible light absorption ability under visible light (> 420 nm) due to its huge surface area, excellent conductivity, and sufficient quantity of active sites, and the accessibility of all elements required for effective photocatalysis. Accordingly, under 300 min of visible light exposure, the Fe3O4@Ti3C2 MXene nanophotocatalyst successfully photodegraded MG dye more efficiently than the pure MXene with a removal percentage of 95.4% with 0.5 g/L loading. Overall, the current study has shown that the Fe3O4@Ti3C2 MXene nanophotocatalyst has the potential to be a valuable photocatalyst for exceptionally efficient wastewater treatment applications.
期刊介绍:
Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry.
The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.