{"title":"Tunnelling of a Composite Particle in Presence of a Magnetic Field","authors":"Bernard Faulend, Jan Dragašević","doi":"10.1007/s00601-024-01963-9","DOIUrl":null,"url":null,"abstract":"<div><p>We present a simple model of composite particle tunnelling through a potential barrier in presence of a (pseudo)magnetic field. The exact numerical solution of the problem is provided and the applicability to real physical systems is discussed. When the magnetic field is present some new qualitative features of the transmission spectrum are observed, compared to the previously studied composite particle tunnelling with no magnetic field. Splitting of energy levels in a magnetic field leads to splitting of transmission probability resonances, which are a generic feature of composite particle tunnelling. Magnetic field also induces precession of spin on the Bloch sphere, that can be used as a Larmor clock for measuring tunnelling time.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"65 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01963-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a simple model of composite particle tunnelling through a potential barrier in presence of a (pseudo)magnetic field. The exact numerical solution of the problem is provided and the applicability to real physical systems is discussed. When the magnetic field is present some new qualitative features of the transmission spectrum are observed, compared to the previously studied composite particle tunnelling with no magnetic field. Splitting of energy levels in a magnetic field leads to splitting of transmission probability resonances, which are a generic feature of composite particle tunnelling. Magnetic field also induces precession of spin on the Bloch sphere, that can be used as a Larmor clock for measuring tunnelling time.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).