Geometric Properties of the 2-D Peskin Problem

IF 2.4 1区 数学 Q1 MATHEMATICS
Jiajun Tong, Dongyi Wei
{"title":"Geometric Properties of the 2-D Peskin Problem","authors":"Jiajun Tong,&nbsp;Dongyi Wei","doi":"10.1007/s40818-024-00187-8","DOIUrl":null,"url":null,"abstract":"<div><p>The 2-D Peskin problem describes a 1-D closed elastic string immersed and moving in a 2-D Stokes flow that is induced by its own elastic force. The geometric shape of the string and its internal stretching configuration evolve in a coupled way, and they combined govern the dynamics of the system. In this paper, we show that certain geometric quantities of the moving string satisfy extremum principles and decay estimates. As a result, we can prove that the 2-D Peskin problem admits a unique global solution when the initial data satisfies a medium-size geometric condition on the string shape, while no assumption on the size of stretching is needed.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00187-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The 2-D Peskin problem describes a 1-D closed elastic string immersed and moving in a 2-D Stokes flow that is induced by its own elastic force. The geometric shape of the string and its internal stretching configuration evolve in a coupled way, and they combined govern the dynamics of the system. In this paper, we show that certain geometric quantities of the moving string satisfy extremum principles and decay estimates. As a result, we can prove that the 2-D Peskin problem admits a unique global solution when the initial data satisfies a medium-size geometric condition on the string shape, while no assumption on the size of stretching is needed.

二维佩斯金问题的几何特性
二维佩斯金问题描述了一个浸没在二维斯托克斯流中并在其中运动的一维封闭弹性弦,该二维斯托克斯流是由其自身的弹性力引起的。弦的几何形状及其内部拉伸构造以耦合的方式演变,它们共同支配着系统的动力学。在本文中,我们证明了运动弦的某些几何量满足极值原理和衰减估计。因此,我们可以证明,当初始数据满足弦形状的中等几何条件时,二维佩斯金问题具有唯一的全局解,而无需假设拉伸的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信