Self-Powered Standalone Performance of Thermoelectric Generator for Body Heat Harvesting

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Anshu Panbude;Pandiyarasan Veluswamy
{"title":"Self-Powered Standalone Performance of Thermoelectric Generator for Body Heat Harvesting","authors":"Anshu Panbude;Pandiyarasan Veluswamy","doi":"10.1109/LSENS.2024.3456289","DOIUrl":null,"url":null,"abstract":"In this letter, we propose a self-powered thermoelectric generator (TEG) to map out the thermal energy to electricity conversion. The wearable flexible thermoelectric generator (FTEG) could generate electric potential from the human skin and environment. The FTEG comes into consideration as an auxiliary supply/passive sensor for power generation to self-charge mode. In this letter, we study the reliability of the FTEG to resist chemicals, water, and moisture. For long-term reliability of the wearable FTEGs, the electrical, mechanical, and thermal performances are significant. The 8-leg FTEG in outdoor conditions at merely 2 °C temperature gradient between human skin and the environment generates an output potential of 0.63 mV to display its sensitivity to temperature variations. The simple fabrication of the TEG performance is stable under water to demonstrate the weathering protection and can withstand 1300 bending cycles. In addition, the interfacial microstructures are investigated to understand the effects of mechanical stress on the thermoelectric leg and bonding material. The mechanical strength to bend and withstand the electrical parameters without significant changes makes it an outstanding candidate for wearable applications.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 11","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669749/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we propose a self-powered thermoelectric generator (TEG) to map out the thermal energy to electricity conversion. The wearable flexible thermoelectric generator (FTEG) could generate electric potential from the human skin and environment. The FTEG comes into consideration as an auxiliary supply/passive sensor for power generation to self-charge mode. In this letter, we study the reliability of the FTEG to resist chemicals, water, and moisture. For long-term reliability of the wearable FTEGs, the electrical, mechanical, and thermal performances are significant. The 8-leg FTEG in outdoor conditions at merely 2 °C temperature gradient between human skin and the environment generates an output potential of 0.63 mV to display its sensitivity to temperature variations. The simple fabrication of the TEG performance is stable under water to demonstrate the weathering protection and can withstand 1300 bending cycles. In addition, the interfacial microstructures are investigated to understand the effects of mechanical stress on the thermoelectric leg and bonding material. The mechanical strength to bend and withstand the electrical parameters without significant changes makes it an outstanding candidate for wearable applications.
用于人体热量收集的热电发生器的自供电独立性能
在这封信中,我们提出了一种自供电热电发生器(TEG),用于绘制热能到电能的转换图。可穿戴柔性热电发生器(FTEG)可以从人体皮肤和环境中产生电势。FTEG 可作为辅助电源/无源传感器,用于发电和自充电模式。在这封信中,我们研究了 FTEG 抵抗化学品、水和湿气的可靠性。对于可穿戴 FTEG 的长期可靠性而言,电气、机械和热性能至关重要。在室外条件下,人体皮肤与环境之间的温度梯度仅为 2 °C,8 脚 FTEG 产生的输出电位为 0.63 mV,显示了它对温度变化的敏感性。该 TEG 制作简单,在水下性能稳定,证明了其耐候性能,并能承受 1300 次弯曲循环。此外,还对界面微结构进行了研究,以了解机械应力对热电腿和粘合材料的影响。这种材料具有弯曲的机械强度,并能承受电参数而不发生重大变化,因此是可穿戴应用的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信