Simulation Study on the All-Inorganic CsSnxGe1–xI3-Based Perovskite Solar Cells Using Isotypic Perovskites as Hole Transport Layers

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS
Shuo Lin, Baoping Zhang, Weichao Wang, Tie-Yu Lü, Jinrong Zhou, Xiuyan Li, Yuhong Fang and Jin-Cheng Zheng*, 
{"title":"Simulation Study on the All-Inorganic CsSnxGe1–xI3-Based Perovskite Solar Cells Using Isotypic Perovskites as Hole Transport Layers","authors":"Shuo Lin,&nbsp;Baoping Zhang,&nbsp;Weichao Wang,&nbsp;Tie-Yu Lü,&nbsp;Jinrong Zhou,&nbsp;Xiuyan Li,&nbsp;Yuhong Fang and Jin-Cheng Zheng*,&nbsp;","doi":"10.1021/acs.energyfuels.4c0396010.1021/acs.energyfuels.4c03960","DOIUrl":null,"url":null,"abstract":"<p >All-inorganic Sn–Ge-based perovskite solar cells (PSCs) have made great progress in recent years. Furthermore, they can be used as promising lead-free absorbers for PSCs, and <i>p</i>-type-doped CsSnI<sub>3</sub>, CsGeI<sub>3</sub>, and CsSn<sub>0.5</sub>Ge<sub>0.5</sub>I<sub>3</sub> could also be used as good hole transport layers (HTLs). In this simulation work, CsSnI<sub>3</sub>, CsGeI<sub>3</sub>, and CsSn<sub>0.5</sub>Ge<sub>0.5</sub>I<sub>3</sub> are used as both absorbers and HTLs. The effects of the dopant concentration of HTLs, the thickness of absorbers, and HTLs on the photovoltaic performance of PSCs were studied to optimize the device structures. The maximum efficiencies from high to low are 28.35%, 26.35%, 25.84%, 25.23%, 18.83%, 17.49%, and 11.79% for the TiO<sub>2</sub>/<i>i</i>-CsSnI<sub>3</sub>/<i>p</i>-CsSnI<sub>3</sub>, TiO<sub>2</sub>/<i>i</i>-CsSn<sub>0.5</sub>Ge<sub>0.5</sub>I<sub>3</sub>/<i>p</i>-CsSn<sub>0.5</sub>Ge<sub>0.5</sub>I<sub>3</sub>, TiO<sub>2</sub>/<i>i</i>-CsSn<sub>0.5</sub>Ge<sub>0.5</sub>I<sub>3</sub>/<i>p</i>-CsSnI<sub>3</sub>, TiO<sub>2</sub>/<i>i</i>-CsSnI<sub>3</sub>/<i>p</i>-CsGeI<sub>3</sub>, TiO<sub>2</sub>/<i>i</i>-CsSn<sub>0.5</sub>Ge<sub>0.5</sub>I<sub>3</sub>/<i>p</i>-CsGeI<sub>3</sub>, TiO<sub>2</sub>/<i>i</i>-CsGeI<sub>3</sub>/<i>p</i>-CsGeI<sub>3</sub>, and TiO<sub>2</sub>/<i>i</i>-CsGeI<sub>3</sub>/<i>p</i>-CsSnI<sub>3</sub>, respectively. The TiO<sub>2</sub>/<i>i</i>-CsGeI<sub>3</sub>/<i>p</i>-CsSnI<sub>3</sub> cell exhibits the lowest efficiency of 11.79% in all of the simulated PSCs due to the spike-like band offset at the <i>i</i>-CsGeI<sub>3</sub>/<i>p</i>-CsSnI<sub>3</sub> interface and high recombination rate in the <i>p</i>-CsSnI<sub>3</sub> region. It is found that the <i>n</i>-<i>p</i> structures could have better photovoltaic performance (thickness of <i>i</i>-film approaching zero) than the conventional <i>n</i>-<i>i</i>-<i>p</i> structures for the TiO<sub>2</sub>/<i>i</i>-CsSnI<sub>3</sub>/<i>p</i>-CsSnI<sub>3</sub>, TiO<sub>2</sub>/<i>i</i>-CsGeI<sub>3</sub>/<i>p</i>-CsGeI<sub>3</sub>, and TiO<sub>2</sub>/<i>i</i>-CsSn<sub>0.5</sub>Ge<sub>0.5</sub>I<sub>3</sub>/<i>p</i>-CsSn<sub>0.5</sub>Ge<sub>0.5</sub>I<sub>3</sub> PSCs if the defects in HTLs created by high doping can be effectively controlled. The efficiencies of PSCs are sensitive to the defect density and defect level position, and the influence of defect density on the PV performance is larger than that of the defect level position. The solar cells could maintain high power conversion efficiency for defect density below about 5 × 10<sup>17</sup> cm<sup>–3</sup>. Furthermore, the increase of the interface trap density is found to reduce the photovoltaic performance of PSCs. Our study provides insight into the optimal design of CsSn<sub><i>x</i></sub>Ge<sub>1–<i>x</i></sub>I<sub>3</sub>-based PSCs.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"38 20","pages":"19831–19846 19831–19846"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c03960","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

All-inorganic Sn–Ge-based perovskite solar cells (PSCs) have made great progress in recent years. Furthermore, they can be used as promising lead-free absorbers for PSCs, and p-type-doped CsSnI3, CsGeI3, and CsSn0.5Ge0.5I3 could also be used as good hole transport layers (HTLs). In this simulation work, CsSnI3, CsGeI3, and CsSn0.5Ge0.5I3 are used as both absorbers and HTLs. The effects of the dopant concentration of HTLs, the thickness of absorbers, and HTLs on the photovoltaic performance of PSCs were studied to optimize the device structures. The maximum efficiencies from high to low are 28.35%, 26.35%, 25.84%, 25.23%, 18.83%, 17.49%, and 11.79% for the TiO2/i-CsSnI3/p-CsSnI3, TiO2/i-CsSn0.5Ge0.5I3/p-CsSn0.5Ge0.5I3, TiO2/i-CsSn0.5Ge0.5I3/p-CsSnI3, TiO2/i-CsSnI3/p-CsGeI3, TiO2/i-CsSn0.5Ge0.5I3/p-CsGeI3, TiO2/i-CsGeI3/p-CsGeI3, and TiO2/i-CsGeI3/p-CsSnI3, respectively. The TiO2/i-CsGeI3/p-CsSnI3 cell exhibits the lowest efficiency of 11.79% in all of the simulated PSCs due to the spike-like band offset at the i-CsGeI3/p-CsSnI3 interface and high recombination rate in the p-CsSnI3 region. It is found that the n-p structures could have better photovoltaic performance (thickness of i-film approaching zero) than the conventional n-i-p structures for the TiO2/i-CsSnI3/p-CsSnI3, TiO2/i-CsGeI3/p-CsGeI3, and TiO2/i-CsSn0.5Ge0.5I3/p-CsSn0.5Ge0.5I3 PSCs if the defects in HTLs created by high doping can be effectively controlled. The efficiencies of PSCs are sensitive to the defect density and defect level position, and the influence of defect density on the PV performance is larger than that of the defect level position. The solar cells could maintain high power conversion efficiency for defect density below about 5 × 1017 cm–3. Furthermore, the increase of the interface trap density is found to reduce the photovoltaic performance of PSCs. Our study provides insight into the optimal design of CsSnxGe1–xI3-based PSCs.

Abstract Image

以同种包晶为空穴传输层的全无机 CsSnxGe1-xI3 基包晶太阳能电池模拟研究
近年来,以锡-锗为基础的全无机包晶太阳能电池(PSCs)取得了长足的进步。此外,它们还可用作 PSCs 的无铅吸收体,而 p 型掺杂的 CsSnI3、CsGeI3 和 CsSn0.5Ge0.5I3 还可用作良好的空穴传输层(HTL)。在这项模拟工作中,CsSnI3、CsGeI3 和 CsSn0.5Ge0.5I3 被用作吸收体和 HTL。研究了 HTL 的掺杂浓度、吸收体和 HTL 的厚度对 PSCs 光伏性能的影响,以优化器件结构。5Ge0.5I3、TiO2/i-CsSn0.5Ge0.5I3/p-CsSnI3、TiO2/i-CsSnI3/p-CsGeI3、TiO2/i-CsSn0.5Ge0.5I3/p-CsGeI3、TiO2/i-CsGeI3/p-CsGeI3 和 TiO2/i-CsGeI3/p-CsSnI3。在所有模拟的 PSC 中,TiO2/i-CsGeI3/p-CsSnI3 电池的效率最低,仅为 11.79%,这是由于 i-CsGeI3/p-CsSnI3 界面的尖峰状带偏移和 p-CsSnI3 区域的高重组率造成的。研究发现,对于 TiO2/i-CsSnI3/p-CsSnI3、TiO2/i-CsGeI3/p-CsGeI3 和 TiO2/i-CsSn0.5Ge0.5I3/p-CsSn0.5Ge0.5I3,如果能有效控制高掺杂在 HTLs 中产生的缺陷,n-p 结构比传统的 ni-p 结构具有更好的光伏性能(i 膜厚度趋近于零)。PSCs 的效率对缺陷密度和缺陷水平位置非常敏感,缺陷密度对光伏性能的影响大于缺陷水平位置。当缺陷密度低于约 5 × 1017 cm-3 时,太阳能电池仍能保持较高的功率转换效率。此外,我们还发现界面陷阱密度的增加会降低 PSC 的光伏性能。我们的研究为基于 CsSnxGe1-xI3 的 PSCs 的优化设计提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信