Daniel Zelch, Christopher M. Russo, Kirsten J. Ruud and Matthew C. O’Reilly*,
{"title":"A General and Scalable Method toward Enantioenriched C2-Substituted Azetidines Using Chiral tert-Butanesulfinamides","authors":"Daniel Zelch, Christopher M. Russo, Kirsten J. Ruud and Matthew C. O’Reilly*, ","doi":"10.1021/acs.joc.4c0190810.1021/acs.joc.4c01908","DOIUrl":null,"url":null,"abstract":"<p >Diverse ranges of chiral nitrogen-containing heterocycles serve as a molecular toolbox for modulating a wide array of biological processes, but enantioenriched production of smaller chiral heterocycles is a bottleneck. There is a lack of general approaches for the stereoselective preparation of chiral 4-membered monocyclic C2-substituted azetidines, where many routes to different substitution types are possible, but no simple and common approach exists. To bridge this gap, inexpensive and widely available chiral <i>tert</i>-butanesulfinamides are harnessed for chiral induction with 1,3-bis-electrophilic 3-chloropropanal, providing a three-step approach to C2-substituted azetidines with aryl, vinyl, allyl, branched alkyl, and linear alkyl substituents. Eleven azetidine products are produced, and the approach is shown to be effective on a gram-scale with a single purification of the protected azetidine product in 44% yield over three steps in an 85:15 diastereomeric ratio. In most cases, the diastereomers are separable using normal phase chromatography, often resulting in previously elusive enantiopure azetidine products. Protected azetidines were shown to undergo rapid and efficient sulfinamide cleavage, producing an azetidine hydrochloride salt that was subjected to derivatization reactions, highlighting the method’s applicability to medicinal chemistry approaches.</p>","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"89 20","pages":"15137–15144 15137–15144"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.joc.4c01908","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.joc.4c01908","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Diverse ranges of chiral nitrogen-containing heterocycles serve as a molecular toolbox for modulating a wide array of biological processes, but enantioenriched production of smaller chiral heterocycles is a bottleneck. There is a lack of general approaches for the stereoselective preparation of chiral 4-membered monocyclic C2-substituted azetidines, where many routes to different substitution types are possible, but no simple and common approach exists. To bridge this gap, inexpensive and widely available chiral tert-butanesulfinamides are harnessed for chiral induction with 1,3-bis-electrophilic 3-chloropropanal, providing a three-step approach to C2-substituted azetidines with aryl, vinyl, allyl, branched alkyl, and linear alkyl substituents. Eleven azetidine products are produced, and the approach is shown to be effective on a gram-scale with a single purification of the protected azetidine product in 44% yield over three steps in an 85:15 diastereomeric ratio. In most cases, the diastereomers are separable using normal phase chromatography, often resulting in previously elusive enantiopure azetidine products. Protected azetidines were shown to undergo rapid and efficient sulfinamide cleavage, producing an azetidine hydrochloride salt that was subjected to derivatization reactions, highlighting the method’s applicability to medicinal chemistry approaches.
期刊介绍:
Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.