{"title":"Development and prospects of covalent organic framework-based ratiometric fluorescent sensors","authors":"Yin-sheng Liu , Rui Xue , Bing Yan","doi":"10.1016/j.ccr.2024.216280","DOIUrl":null,"url":null,"abstract":"<div><div>Ratiometric fluorescence sensors attract more and more attention in the field of fluorescence sensors due to their excellent properties. The advanced material with high luminescent properties is the key to developing ratiometric fluorescence sensors. The covalent organic frameworks (COFs) stand out as an exceptional candidate for fluorescence sensing due to their expansive specific surface area and abundant active sites. However, the design, preparation, and application of COF-based ratiometric fluorescent sensors still represent a promising area for further development. This review collects the design principle of COFs and summarizes the design idea, sensing mode, and mechanism of COF-based ratiometric fluorescent sensors. Furthermore, the approaches to achieving a more comprehensive application of ratiometric fluorescent sensors with two emission centers are discussed. This review presents the research progress, challenges, and future directions in the field of COFs for fluorescent sensors, which is important for the development of high-performance ratiometric fluorescence sensors and the expansion of the application of COFs.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"523 ","pages":"Article 216280"},"PeriodicalIF":20.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001085452400626X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Ratiometric fluorescence sensors attract more and more attention in the field of fluorescence sensors due to their excellent properties. The advanced material with high luminescent properties is the key to developing ratiometric fluorescence sensors. The covalent organic frameworks (COFs) stand out as an exceptional candidate for fluorescence sensing due to their expansive specific surface area and abundant active sites. However, the design, preparation, and application of COF-based ratiometric fluorescent sensors still represent a promising area for further development. This review collects the design principle of COFs and summarizes the design idea, sensing mode, and mechanism of COF-based ratiometric fluorescent sensors. Furthermore, the approaches to achieving a more comprehensive application of ratiometric fluorescent sensors with two emission centers are discussed. This review presents the research progress, challenges, and future directions in the field of COFs for fluorescent sensors, which is important for the development of high-performance ratiometric fluorescence sensors and the expansion of the application of COFs.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.