Hao Zhang, Qing Zhang, Guang-Ren Qian, Hong Liu, Yang Yue
{"title":"Bimodal mesoporous AlMCM-41 supported NiMo catalysts for efficient hydrodesulfurization of 4,6-dimethyldibenzothiophene","authors":"Hao Zhang, Qing Zhang, Guang-Ren Qian, Hong Liu, Yang Yue","doi":"10.1016/j.jcat.2024.115799","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, a bimodal mesoporous AlMCM-41 (B-AM41) material was prepared and applied to support NiMo catalysts for the hydrodesulfurization (HDS) of 4,6-dimethyldibenzothiophene. Additionally, catalysts supported on smaller and larger single-pore AlMCM-41 (S-AM41 and L-AM41) were also prepared as reference catalysts. Detailed characterizations show that the proportion, stacking degree, and length of the MoS<sub>2</sub> active phase on the different catalysts are distinct. As a result, HDS evaluation indicates that the NiMo/B-AM41 catalyst exhibited better catalytic activity with a reaction rate constant of 10.4 × 10<sup>−8</sup> mol g<sup>−1</sup> s<sup>−1</sup> and a turnover frequency of 7.0 × 10<sup>−4</sup> s<sup>−1</sup>, significantly surpassing the S-AM41 and L-AM41 supported catalysts. The superior activity of the NiMo/B-AM41 catalyst can be attributed to a high sulfidation degree that provides sufficient highly dispersed type Ⅱ MoS<sub>2</sub> phases with minimal stacking and moderate slab length. Moreover, the bimodal mesoporous structure promotes the diffusion of 4,6-DMDBT and benefits its contact with active sites.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115799"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724005128","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, a bimodal mesoporous AlMCM-41 (B-AM41) material was prepared and applied to support NiMo catalysts for the hydrodesulfurization (HDS) of 4,6-dimethyldibenzothiophene. Additionally, catalysts supported on smaller and larger single-pore AlMCM-41 (S-AM41 and L-AM41) were also prepared as reference catalysts. Detailed characterizations show that the proportion, stacking degree, and length of the MoS2 active phase on the different catalysts are distinct. As a result, HDS evaluation indicates that the NiMo/B-AM41 catalyst exhibited better catalytic activity with a reaction rate constant of 10.4 × 10−8 mol g−1 s−1 and a turnover frequency of 7.0 × 10−4 s−1, significantly surpassing the S-AM41 and L-AM41 supported catalysts. The superior activity of the NiMo/B-AM41 catalyst can be attributed to a high sulfidation degree that provides sufficient highly dispersed type Ⅱ MoS2 phases with minimal stacking and moderate slab length. Moreover, the bimodal mesoporous structure promotes the diffusion of 4,6-DMDBT and benefits its contact with active sites.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.