Thermal Evaporating-Trapping Strategy to Synthesize Flexible and Robust Oxygen Electrocatalysts for Rechargeable Zinc-Air Batteries

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hong-Bo Zhang, Yu Meng, Lingzhe Fang, Fei Yang, Shangqian Zhu, Tao Li, Xiaohua Yu, Ju Rong, Weiwei Chen, Dong Su, Yi Mei, Peng-Xiang Hou, Chang Liu, Minhua Shao, Jin-Cheng Li
{"title":"Thermal Evaporating-Trapping Strategy to Synthesize Flexible and Robust Oxygen Electrocatalysts for Rechargeable Zinc-Air Batteries","authors":"Hong-Bo Zhang, Yu Meng, Lingzhe Fang, Fei Yang, Shangqian Zhu, Tao Li, Xiaohua Yu, Ju Rong, Weiwei Chen, Dong Su, Yi Mei, Peng-Xiang Hou, Chang Liu, Minhua Shao, Jin-Cheng Li","doi":"10.1039/d4ee03005b","DOIUrl":null,"url":null,"abstract":"Great efforts have been devoted to the development of bifunctional electrocatalysts to accelerate the sluggish kinetics of cathodic oxygen reduction/evolution reactions (ORR/OER) in zinc–air batteries (ZABs). Here we report a thermal evaporating-trapping synergistic strategy to fabricate bifunctional electrocatalyst of flexible N-doped carbon fiber cloth loaded with both CoFe-oxide nanoparticles and single-atom Co/Fe-Nx sites, in which the thermal evaporation process functions in both downsizing CoFe-oxide nanoparticles and trapping the evaporated Co/Fe species to generate Co/Fe-Nx sites. The obtained flexible electrocatalyst, directly served as an oxygen electrode, displays a small potential gap of 0.542 V for OER/ORR, large peak power densities (liquid-state ZAB: 237.4 mW cm–2; solid-state ZAB: 141.1 mW cm-2), and excellent charge-discharge cycling stability without decay after 1000 cycles. Furthermore, in situ Raman spectroscopy characterization reveals that CoFe2O4 species is responsible for the OER catalysis.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":null,"pages":null},"PeriodicalIF":32.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03005b","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Great efforts have been devoted to the development of bifunctional electrocatalysts to accelerate the sluggish kinetics of cathodic oxygen reduction/evolution reactions (ORR/OER) in zinc–air batteries (ZABs). Here we report a thermal evaporating-trapping synergistic strategy to fabricate bifunctional electrocatalyst of flexible N-doped carbon fiber cloth loaded with both CoFe-oxide nanoparticles and single-atom Co/Fe-Nx sites, in which the thermal evaporation process functions in both downsizing CoFe-oxide nanoparticles and trapping the evaporated Co/Fe species to generate Co/Fe-Nx sites. The obtained flexible electrocatalyst, directly served as an oxygen electrode, displays a small potential gap of 0.542 V for OER/ORR, large peak power densities (liquid-state ZAB: 237.4 mW cm–2; solid-state ZAB: 141.1 mW cm-2), and excellent charge-discharge cycling stability without decay after 1000 cycles. Furthermore, in situ Raman spectroscopy characterization reveals that CoFe2O4 species is responsible for the OER catalysis.
为可充电锌-空气电池合成灵活而坚固的氧电催化剂的热蒸发-捕集策略
人们一直致力于开发双功能电催化剂,以加速锌-空气电池(ZAB)中缓慢的阴极氧还原/进化反应(ORR/OER)动力学。在此,我们报告了一种热蒸发-捕集协同策略,用于制造同时负载氧化钴纳米颗粒和单原子 Co/Fe-Nx 位点的柔性 N 掺杂碳纤维布双功能电催化剂,其中热蒸发过程既能缩小氧化钴纳米颗粒的尺寸,又能捕集蒸发的 Co/Fe 物种以生成 Co/Fe-Nx 位点。所获得的柔性电催化剂可直接用作氧电极,其 OER/ORR 电位间隙小至 0.542 V,峰值功率密度大(液态 ZAB:237.4 mW cm-2;固态 ZAB:141.1 mW cm-2),充放电循环稳定性极佳,1000 次循环后无衰减。此外,原位拉曼光谱表征显示,CoFe2O4 物种是 OER 催化的主要成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信