Siyu Yang , Guoqing Miao , Xinyu Wang , Fen Zhou , Ziheng Yuan , Fuyao Wei , Lusha Ji , Xuekun Wang , Gaopan Dong , Yinhu Wang
{"title":"Development of membrane-targeting chalcone derivatives as antibacterial agents against multidrug-resistant bacteria","authors":"Siyu Yang , Guoqing Miao , Xinyu Wang , Fen Zhou , Ziheng Yuan , Fuyao Wei , Lusha Ji , Xuekun Wang , Gaopan Dong , Yinhu Wang","doi":"10.1016/j.ejmech.2024.116969","DOIUrl":null,"url":null,"abstract":"<div><div>The striking rise of infections caused by multidrug-resistant pathogens has evolved as a serious threat to public health worldwide. To develop new antibacterials to combat multidrug-resistant bacteria, a novel class of amphiphilic chalcone derivatives serving as antimicrobial peptidomimetics was designed and synthesized. Among them, the most promising compound <strong>14b</strong> displayed broad-spectrum antimicrobial activity against both Gram-positive bacteria (MICs = 0.5–1 μg/mL) and Gram-negative bacteria (MICs = 1–32 μg/mL), low hemolytic activity, and good membrane selectivity. Moreover, compound <strong>14b</strong> exhibited rapid bactericidal action, a low probability of developing resistance, high proteolytic stability, and strong capabilities of inhibiting and destroying bacterial biofilms. Further mechanism investigations revealed that compound <strong>14b</strong> possessed strong membrane-disrupting abilities and could disintegrate the integrity of bacterial cell membranes by destroying transmembrane potential and enhancing membrane permeability, and causing the generation of intracellular ROS and the leakage of DNA and proteins, ultimately leading to bacterial death. More importantly, compound <strong>14b</strong> also showed excellent <em>in vivo</em> therapeutic potency in a mouse septicemia model infected by both Gram-positive and Gram-negative bacteria, indicating its potential to be an antibacterial agent to confront bacterial infections.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"280 ","pages":"Article 116969"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S022352342400850X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The striking rise of infections caused by multidrug-resistant pathogens has evolved as a serious threat to public health worldwide. To develop new antibacterials to combat multidrug-resistant bacteria, a novel class of amphiphilic chalcone derivatives serving as antimicrobial peptidomimetics was designed and synthesized. Among them, the most promising compound 14b displayed broad-spectrum antimicrobial activity against both Gram-positive bacteria (MICs = 0.5–1 μg/mL) and Gram-negative bacteria (MICs = 1–32 μg/mL), low hemolytic activity, and good membrane selectivity. Moreover, compound 14b exhibited rapid bactericidal action, a low probability of developing resistance, high proteolytic stability, and strong capabilities of inhibiting and destroying bacterial biofilms. Further mechanism investigations revealed that compound 14b possessed strong membrane-disrupting abilities and could disintegrate the integrity of bacterial cell membranes by destroying transmembrane potential and enhancing membrane permeability, and causing the generation of intracellular ROS and the leakage of DNA and proteins, ultimately leading to bacterial death. More importantly, compound 14b also showed excellent in vivo therapeutic potency in a mouse septicemia model infected by both Gram-positive and Gram-negative bacteria, indicating its potential to be an antibacterial agent to confront bacterial infections.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.