{"title":"α-Linolenic acid from Mori Folltfm found as Choloylglycine hydrolase inhibitor by the developed fluorescent probe to alleviate type 2 diabetes","authors":"","doi":"10.1016/j.snb.2024.136789","DOIUrl":null,"url":null,"abstract":"<div><div>Choloylglycine hydrolase (CH), also known as bile salt hydrolase, is expressed by intestinal microbiota and plays a key role in the hydrolysis of conjugated bile acids, influencing the composition and levels of various bile acids. In this study, a conjugate (<strong>CA-ACDI</strong>) of cholic acid and a semi-cyanine derivative was developed as an enzyme-activated fluorescent probe for detecting CH activity, showing potential applications in this area. By the high-throughput screening of CH activity using <strong>CA-ACDI</strong>, <em>Mori Folium</em> was identified as a significant CH inhibitor from a collection of 95 traditional herbal medicines. Further analysis using various chromatographic techniques and spectroscopic data identified α-linolenic acid as the key bioactive component in <em>Mori Folium</em> responsible for inhibiting CH activity. Importantly, α-Linolenic acid, as a natural CH inhibitor, was shown to significantly regulate glucose metabolism in a type 2 diabetes mellitus (T2DM) mouse model via the FXR signaling pathway. This work not only developed a novel fluorescent probe for CH detection but also discovered potential CH inhibitors that may help alleviate type 2 diabetes.</div></div>","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925400524015193","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Choloylglycine hydrolase (CH), also known as bile salt hydrolase, is expressed by intestinal microbiota and plays a key role in the hydrolysis of conjugated bile acids, influencing the composition and levels of various bile acids. In this study, a conjugate (CA-ACDI) of cholic acid and a semi-cyanine derivative was developed as an enzyme-activated fluorescent probe for detecting CH activity, showing potential applications in this area. By the high-throughput screening of CH activity using CA-ACDI, Mori Folium was identified as a significant CH inhibitor from a collection of 95 traditional herbal medicines. Further analysis using various chromatographic techniques and spectroscopic data identified α-linolenic acid as the key bioactive component in Mori Folium responsible for inhibiting CH activity. Importantly, α-Linolenic acid, as a natural CH inhibitor, was shown to significantly regulate glucose metabolism in a type 2 diabetes mellitus (T2DM) mouse model via the FXR signaling pathway. This work not only developed a novel fluorescent probe for CH detection but also discovered potential CH inhibitors that may help alleviate type 2 diabetes.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.