{"title":"A transcription factor, PbWRKY24, contributes to russet skin formation in pear fruits by modulating lignin accumulation","authors":"Jialong Wang, Dong Wang, Mingrui Zhao, Mengyuan Yu, Xiaodong Zheng, Yike Tian, Zhijuan Sun, Xiaoli Liu, Caihong Wang, Changqing Ma","doi":"10.1093/hr/uhae300","DOIUrl":null,"url":null,"abstract":"Skin color is one of the major traits of fruit appearance quality in pear (Pyrus), which affects the fruit commodity value. Russet skin protects pear fruits from environmental stresses and its formation process is closely linked to lignin accumulation. However, the molecular regulatory networks underlying russet skin formation in pear fruits involve complex secondary metabolic pathways and remain elusive. Here, we explored the regulatory mechanisms underlying lignin accumulation in pear skin based on transcriptome sequencing, co-expression network analysis, and gene expression profiling. We identified a WRKY transcription factor gene, PbWRKY24, that regulates russet skin formation in pear fruits. The relative expression of PbWRKY24 in russet pear skin was significantly correlated with lignin content. We then verified the function of PbWRKY24 in lignin accumulation via genetic transformation. DNA affinity purification sequencing revealed that PbWRKY24 directly binds to the promoter of a lignin biosynthesis gene, PbPRX4. This binding was confirmed by yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays. Overexpression of PbPRX4 in pear skin stimulated lignin accumulation and consequently promoted russet skin formation. This study provides a glimpse into the intricate lignin biosynthesis mechanisms during russet skin formation in pear fruits, which is of practical significance to pear breeding for fruit quality.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"12 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae300","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Skin color is one of the major traits of fruit appearance quality in pear (Pyrus), which affects the fruit commodity value. Russet skin protects pear fruits from environmental stresses and its formation process is closely linked to lignin accumulation. However, the molecular regulatory networks underlying russet skin formation in pear fruits involve complex secondary metabolic pathways and remain elusive. Here, we explored the regulatory mechanisms underlying lignin accumulation in pear skin based on transcriptome sequencing, co-expression network analysis, and gene expression profiling. We identified a WRKY transcription factor gene, PbWRKY24, that regulates russet skin formation in pear fruits. The relative expression of PbWRKY24 in russet pear skin was significantly correlated with lignin content. We then verified the function of PbWRKY24 in lignin accumulation via genetic transformation. DNA affinity purification sequencing revealed that PbWRKY24 directly binds to the promoter of a lignin biosynthesis gene, PbPRX4. This binding was confirmed by yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays. Overexpression of PbPRX4 in pear skin stimulated lignin accumulation and consequently promoted russet skin formation. This study provides a glimpse into the intricate lignin biosynthesis mechanisms during russet skin formation in pear fruits, which is of practical significance to pear breeding for fruit quality.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.