Materials for high-temperature digital electronics

IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dhiren K. Pradhan, David C. Moore, A. Matt Francis, Jacob Kupernik, W. Joshua Kennedy, Nicholas R. Glavin, Roy H. Olsson III, Deep Jariwala
{"title":"Materials for high-temperature digital electronics","authors":"Dhiren K. Pradhan, David C. Moore, A. Matt Francis, Jacob Kupernik, W. Joshua Kennedy, Nicholas R. Glavin, Roy H. Olsson III, Deep Jariwala","doi":"10.1038/s41578-024-00731-9","DOIUrl":null,"url":null,"abstract":"Silicon microelectronics, consisting of complementary metal–oxide–semiconductor technology, have changed nearly all aspects of human life from communication to transportation, entertainment and health care. Despite their widespread and mainstream use, current silicon-based devices are unreliable at temperatures exceeding 125 °C. The emergent technological frontiers of space exploration, geothermal energy harvesting, nuclear energy, unmanned avionic systems and autonomous driving will rely on control systems, sensors and communication devices that operate at temperatures as high as 500 °C and beyond. At these extreme temperatures, active (heat exchanger and phase-change cooling) or passive (fins and thermal interface materials) cooling strategies add considerable mass and complicate the systems, which is often infeasible. Thus, new material solutions beyond conventional silicon complementary metal–oxide–semiconductor devices are necessary for high-temperature, resilient electronic systems. The ultimate realization of high-temperature electronic systems requires united efforts to develop, integrate and ultimately manufacture non-silicon-based logic and memory technologies, non-traditional metals for interconnects and ceramic packaging technology. Digital electronics capable of operating at elevated temperatures are gaining importance in aerospace, space and geothermal energy as well as oil and gas exploration. This Review presents recent advances and future outlook on critical materials and devices for the same.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 11","pages":"790-807"},"PeriodicalIF":79.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41578-024-00731-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon microelectronics, consisting of complementary metal–oxide–semiconductor technology, have changed nearly all aspects of human life from communication to transportation, entertainment and health care. Despite their widespread and mainstream use, current silicon-based devices are unreliable at temperatures exceeding 125 °C. The emergent technological frontiers of space exploration, geothermal energy harvesting, nuclear energy, unmanned avionic systems and autonomous driving will rely on control systems, sensors and communication devices that operate at temperatures as high as 500 °C and beyond. At these extreme temperatures, active (heat exchanger and phase-change cooling) or passive (fins and thermal interface materials) cooling strategies add considerable mass and complicate the systems, which is often infeasible. Thus, new material solutions beyond conventional silicon complementary metal–oxide–semiconductor devices are necessary for high-temperature, resilient electronic systems. The ultimate realization of high-temperature electronic systems requires united efforts to develop, integrate and ultimately manufacture non-silicon-based logic and memory technologies, non-traditional metals for interconnects and ceramic packaging technology. Digital electronics capable of operating at elevated temperatures are gaining importance in aerospace, space and geothermal energy as well as oil and gas exploration. This Review presents recent advances and future outlook on critical materials and devices for the same.

Abstract Image

Abstract Image

高温数字电子器件材料
由互补金属氧化物半导体技术组成的硅微电子技术几乎改变了人类生活的方方面面,从通信到交通、娱乐和医疗保健。尽管硅微电子技术已被广泛应用并成为主流技术,但目前的硅基器件在温度超过 125 ℃ 时仍不可靠。太空探索、地热能采集、核能、无人驾驶航空系统和自动驾驶等新兴技术前沿将依赖于在高达 500 ℃ 或更高温度下运行的控制系统、传感器和通信设备。在这些极端温度下,主动(热交换器和相变冷却)或被动(鳍片和热界面材料)冷却策略会增加相当大的质量,并使系统复杂化,这通常是不可行的。因此,除了传统的硅互补金属氧化物半导体器件外,高温弹性电子系统还需要新的材料解决方案。要最终实现高温电子系统,需要各方共同努力,开发、集成并最终制造非硅基逻辑和存储器技术、用于互连的非传统金属以及陶瓷封装技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Materials
Nature Reviews Materials Materials Science-Biomaterials
CiteScore
119.40
自引率
0.40%
发文量
107
期刊介绍: Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments. Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信