iNAP 2.0: Harnessing metabolic complementarity in microbial network analysis

IF 23.7 Q1 MICROBIOLOGY
iMeta Pub Date : 2024-09-23 DOI:10.1002/imt2.235
Xi Peng, Kai Feng, Xingsheng Yang, Qing He, Bo Zhao, Tong Li, Shang Wang, Ye Deng
{"title":"iNAP 2.0: Harnessing metabolic complementarity in microbial network analysis","authors":"Xi Peng,&nbsp;Kai Feng,&nbsp;Xingsheng Yang,&nbsp;Qing He,&nbsp;Bo Zhao,&nbsp;Tong Li,&nbsp;Shang Wang,&nbsp;Ye Deng","doi":"10.1002/imt2.235","DOIUrl":null,"url":null,"abstract":"<p>With the widespread adoption of metagenomic sequencing, new perspectives have emerged for studying microbial ecological networks, yielding metabolic evidence of interspecies interactions that traditional co-occurrence networks cannot infer. This protocol introduces the integrated Network Analysis Pipeline 2.0 (iNAP 2.0), which features an innovative metabolic complementarity network for microbial studies from metagenomics sequencing data. iNAP 2.0 sets up a four-module process for metabolic interaction analysis, namely: (I) Prepare genome-scale metabolic models; (II) Infer pairwise interactions of genome-scale metabolic models; (III) Construct metabolic interaction networks; and (IV) Analyze metabolic interaction networks. Starting from metagenome-assembled or complete genomes, iNAP 2.0 offers a variety of methods to quantify the potential and trends of metabolic complementarity between models, including the PhyloMint pipeline based on phylogenetic distance-adjusted metabolic complementarity, the SMETANA (species metabolic interaction analysis) approach based on cross-feeding substrate exchange prediction, and metabolic distance calculation based on parsimonious flux balance analysis (pFBA). Notably, iNAP 2.0 integrates the random matrix theory (RMT) approach to find the suitable threshold for metabolic interaction network construction. Finally, the metabolic interaction networks can proceed to analysis using topological feature analysis such as hub node determination. In addition, a key feature of iNAP 2.0 is the identification of potentially transferable metabolites between species, presented as intermediate nodes that connect microbial nodes in the metabolic complementarity network. To illustrate these new features, we use a set of metagenome-assembled genomes as an example to comprehensively document the usage of the tools. iNAP 2.0 is available at https://inap.denglab.org.cn for all users to register and use for free.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 5","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.235","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the widespread adoption of metagenomic sequencing, new perspectives have emerged for studying microbial ecological networks, yielding metabolic evidence of interspecies interactions that traditional co-occurrence networks cannot infer. This protocol introduces the integrated Network Analysis Pipeline 2.0 (iNAP 2.0), which features an innovative metabolic complementarity network for microbial studies from metagenomics sequencing data. iNAP 2.0 sets up a four-module process for metabolic interaction analysis, namely: (I) Prepare genome-scale metabolic models; (II) Infer pairwise interactions of genome-scale metabolic models; (III) Construct metabolic interaction networks; and (IV) Analyze metabolic interaction networks. Starting from metagenome-assembled or complete genomes, iNAP 2.0 offers a variety of methods to quantify the potential and trends of metabolic complementarity between models, including the PhyloMint pipeline based on phylogenetic distance-adjusted metabolic complementarity, the SMETANA (species metabolic interaction analysis) approach based on cross-feeding substrate exchange prediction, and metabolic distance calculation based on parsimonious flux balance analysis (pFBA). Notably, iNAP 2.0 integrates the random matrix theory (RMT) approach to find the suitable threshold for metabolic interaction network construction. Finally, the metabolic interaction networks can proceed to analysis using topological feature analysis such as hub node determination. In addition, a key feature of iNAP 2.0 is the identification of potentially transferable metabolites between species, presented as intermediate nodes that connect microbial nodes in the metabolic complementarity network. To illustrate these new features, we use a set of metagenome-assembled genomes as an example to comprehensively document the usage of the tools. iNAP 2.0 is available at https://inap.denglab.org.cn for all users to register and use for free.

Abstract Image

iNAP 2.0:在微生物网络分析中利用代谢互补性
随着元基因组测序技术的广泛应用,微生物生态网络的研究出现了新的视角,产生了传统共现网络无法推断的物种间相互作用的代谢证据。本方案介绍了集成网络分析管道 2.0(iNAP 2.0),其特点是从元基因组测序数据出发,为微生物研究提供创新的代谢互补网络。iNAP 2.0 建立了代谢相互作用分析的四个模块流程,即:(I)准备基因组尺度的代谢模型;(II)推断基因组尺度代谢模型的成对相互作用;(III)构建代谢相互作用网络;以及(IV)分析代谢相互作用网络。从元基因组组装或完整基因组开始,iNAP 2.0 提供了多种方法来量化模型间代谢互补性的潜力和趋势,包括基于系统发育距离调整代谢互补性的 PhyloMint 管道、基于交叉进食底物交换预测的 SMETANA(物种代谢相互作用分析)方法和基于准通量平衡分析(pFBA)的代谢距离计算。值得注意的是,iNAP 2.0 整合了随机矩阵理论(RMT)方法,以找到构建代谢互作网络的合适阈值。最后,代谢交互网络可以利用拓扑特征分析法进行分析,如确定枢纽节点。此外,iNAP 2.0 的一个关键功能是识别物种间潜在的可转移代谢物,这些代谢物作为中间节点连接着代谢互补网络中的微生物节点。为了说明这些新功能,我们以一组元基因组组装的基因组为例,全面记录了工具的使用情况。iNAP 2.0 可在 https://inap.denglab.org.cn 网站上免费注册和使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信