ImageGP 2 for enhanced data visualization and reproducible analysis in biomedical research

IF 23.7 Q1 MICROBIOLOGY
iMeta Pub Date : 2024-09-12 DOI:10.1002/imt2.239
Tong Chen, Yong-Xin Liu, Tao Chen, Mei Yang, Siqing Fan, Minglei Shi, Buqing Wei, Huijiao Lv, Wandi Cao, Chongming Wang, Jianzhou Cui, Jiwen Zhao, Yilai Han, Jiao Xi, Ziqiang Zheng, Luqi Huang
{"title":"ImageGP 2 for enhanced data visualization and reproducible analysis in biomedical research","authors":"Tong Chen,&nbsp;Yong-Xin Liu,&nbsp;Tao Chen,&nbsp;Mei Yang,&nbsp;Siqing Fan,&nbsp;Minglei Shi,&nbsp;Buqing Wei,&nbsp;Huijiao Lv,&nbsp;Wandi Cao,&nbsp;Chongming Wang,&nbsp;Jianzhou Cui,&nbsp;Jiwen Zhao,&nbsp;Yilai Han,&nbsp;Jiao Xi,&nbsp;Ziqiang Zheng,&nbsp;Luqi Huang","doi":"10.1002/imt2.239","DOIUrl":null,"url":null,"abstract":"<p>ImageGP is an extensively utilized, open-access platform for online data visualization and analysis. Over the past 7 years, it has catered to more than 700,000 usages globally, garnering substantial user feedback. The updated version, ImageGP 2 (available at https://www.bic.ac.cn/BIC), introduces a redesigned interface leveraging cutting-edge web technologies to enhance functionality and user interaction. Key enhancements include the following: (i) Addition of modules for data format transformation, facilitating operations such as matrix merging, subsetting, and transformation between long and wide formats. (ii) Streamlined workflows with features like preparameter selection data validation and grouping of parameters with similar attributes. (iii) Expanded repertoire of visualization functions and analysis tools, including Weighted Gene Co-Expression Network Analysis, differential gene expression analysis, and FASTA sequence processing. (iv) Personalized user space for uploading large data sets, tracking analysis history, and sharing reproducible analysis data, scripts, and results. (v) Enhanced user support through a simplified error debugging feature accessible with a single click. (vi) Introduction of an R package, ImageGP, enabling local data visualization and analysis. These updates position ImageGP 2 as a versatile tool serving both wet-lab and dry-lab researchers with expanded capabilities.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 5","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.239","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ImageGP is an extensively utilized, open-access platform for online data visualization and analysis. Over the past 7 years, it has catered to more than 700,000 usages globally, garnering substantial user feedback. The updated version, ImageGP 2 (available at https://www.bic.ac.cn/BIC), introduces a redesigned interface leveraging cutting-edge web technologies to enhance functionality and user interaction. Key enhancements include the following: (i) Addition of modules for data format transformation, facilitating operations such as matrix merging, subsetting, and transformation between long and wide formats. (ii) Streamlined workflows with features like preparameter selection data validation and grouping of parameters with similar attributes. (iii) Expanded repertoire of visualization functions and analysis tools, including Weighted Gene Co-Expression Network Analysis, differential gene expression analysis, and FASTA sequence processing. (iv) Personalized user space for uploading large data sets, tracking analysis history, and sharing reproducible analysis data, scripts, and results. (v) Enhanced user support through a simplified error debugging feature accessible with a single click. (vi) Introduction of an R package, ImageGP, enabling local data visualization and analysis. These updates position ImageGP 2 as a versatile tool serving both wet-lab and dry-lab researchers with expanded capabilities.

Abstract Image

在生物医学研究中增强数据可视化和可重现分析的 ImageGP 2
ImageGP 是一个广泛使用的开放式在线数据可视化和分析平台。在过去的 7 年中,它在全球范围内的使用次数已超过 70 万次,获得了大量的用户反馈。更新版 ImageGP 2(可从 https://www.bic.ac.cn/BIC 获取)采用了重新设计的界面,利用最先进的网络技术增强了功能和用户交互性。主要改进包括(i) 增加了数据格式转换模块,方便了矩阵合并、子集和长宽格式转换等操作。(ii) 简化工作流程,提供预备参数选择数据验证和相似属性参数分组等功能。 (iii) 扩展可视化功能和分析工具,包括加权基因共表达网络分析、差异基因表达分析和 FASTA 序列处理。(iv) 个性化的用户空间,用于上传大型数据集、跟踪分析历史以及共享可重复的分析数据、脚本和结果。(v) 通过单击即可访问的简化错误调试功能增强了用户支持。(vi) 引入 R 软件包 ImageGP,实现本地数据可视化和分析。这些更新使 ImageGP 2 成为一款多功能工具,为湿实验室和干实验室的研究人员提供更强大的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信