{"title":"Design and investigation of an ultra-wideband microstrip patch antenna for biomedical on-body applications","authors":"Rahul Krishnan, Selina Cheggour, Priya R. Meher","doi":"10.1002/mop.70003","DOIUrl":null,"url":null,"abstract":"<p>Microstrip antennas are increasingly utilized in space-borne applications, spanning areas such as RFID, mobile communication, and healthcare. This paper introduces a novel wearable ultra-wideband (UWB) microstrip patch antenna, distinctively designed in a star shape. The antenna, with a total volume of 1172 mmÂş, is crafted on a semiflexible substrate using RT/duroid 5880. It exhibits a low loss tangent of 0.0004 and a relative permittivity of 2.2. The proposed design achieves a resonant frequency of 3.4 GHz, an impressive reflection coefficient of −39 dB, and an extensive bandwidth of 5.6 GHz, ranging from 2.8 to 8.4 GHz. Although the antenna demonstrates modest gain and directivity, its expansive bandwidth is a significant attribute. This wideband antenna is proposed as an ideal candidate for wearable biomedical applications, leveraging its substantial bandwidth and unique design characteristics.</p>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"66 10","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Microstrip antennas are increasingly utilized in space-borne applications, spanning areas such as RFID, mobile communication, and healthcare. This paper introduces a novel wearable ultra-wideband (UWB) microstrip patch antenna, distinctively designed in a star shape. The antenna, with a total volume of 1172 mmÂş, is crafted on a semiflexible substrate using RT/duroid 5880. It exhibits a low loss tangent of 0.0004 and a relative permittivity of 2.2. The proposed design achieves a resonant frequency of 3.4 GHz, an impressive reflection coefficient of −39 dB, and an extensive bandwidth of 5.6 GHz, ranging from 2.8 to 8.4 GHz. Although the antenna demonstrates modest gain and directivity, its expansive bandwidth is a significant attribute. This wideband antenna is proposed as an ideal candidate for wearable biomedical applications, leveraging its substantial bandwidth and unique design characteristics.
期刊介绍:
Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas.
- RF, Microwave, and Millimeter Waves
- Antennas and Propagation
- Submillimeter-Wave and Infrared Technology
- Optical Engineering
All papers are subject to peer review before publication