Shwetha Hegde, Shanika Nanayakkara, Stephen Cox, Rajesh Vasa, Jinlong Gao
{"title":"Australian Dentists' Knowledge of the Consequences of Interpretive Errors in Dental Radiographs and Potential Mitigation Measures","authors":"Shwetha Hegde, Shanika Nanayakkara, Stephen Cox, Rajesh Vasa, Jinlong Gao","doi":"10.1002/cre2.70027","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objectives</h3>\n \n <p>Dental radiographs, typically taken and interpreted by dentists, are essential for diagnosis and effective treatment planning. Interpretive errors in dental radiographs, stemming from failures of visual and cognitive processes, can affect both patients and clinicians. This survey aimed to assess the dental practitioners' perceptions of the consequences of these errors and potential measures to minimize them.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>This online anonymized survey assessed Australian dental practitioners' perceptions of the consequences of these errors and potential mitigation measures using ranking, Likert scale, and open-ended questions. The data were analyzed using descriptive statistics and bivariate analysis.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Participants identified undertreatment (72%) and legal implications (82%) as the most significant consequences of interpretive errors, whereas severe harm to patients was deemed the least likely. Dental practitioners placed a greater emphasis on maintaining a high level of competence and the well-being of their patients. Utilizing high-quality images (63.9%) and appropriate radiographs (59.7%) were identified as the most effective measures to minimize interpretive errors. Participants showed hesitancy regarding the reliance on machine learning as a clinical decision-making tool.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The survey provides valuable practical insights into the consequences and targeted measures to minimize the occurrence of interpretive errors. Efforts to minimize interpretive errors should address patient safety and practitioners' concerns about professional reputation and business viability. The study also suggests further research into the role of machine learning algorithms in reducing interpretive errors in dentistry.</p>\n </section>\n </div>","PeriodicalId":10203,"journal":{"name":"Clinical and Experimental Dental Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cre2.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Dental Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cre2.70027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Dental radiographs, typically taken and interpreted by dentists, are essential for diagnosis and effective treatment planning. Interpretive errors in dental radiographs, stemming from failures of visual and cognitive processes, can affect both patients and clinicians. This survey aimed to assess the dental practitioners' perceptions of the consequences of these errors and potential measures to minimize them.
Materials and Methods
This online anonymized survey assessed Australian dental practitioners' perceptions of the consequences of these errors and potential mitigation measures using ranking, Likert scale, and open-ended questions. The data were analyzed using descriptive statistics and bivariate analysis.
Results
Participants identified undertreatment (72%) and legal implications (82%) as the most significant consequences of interpretive errors, whereas severe harm to patients was deemed the least likely. Dental practitioners placed a greater emphasis on maintaining a high level of competence and the well-being of their patients. Utilizing high-quality images (63.9%) and appropriate radiographs (59.7%) were identified as the most effective measures to minimize interpretive errors. Participants showed hesitancy regarding the reliance on machine learning as a clinical decision-making tool.
Conclusions
The survey provides valuable practical insights into the consequences and targeted measures to minimize the occurrence of interpretive errors. Efforts to minimize interpretive errors should address patient safety and practitioners' concerns about professional reputation and business viability. The study also suggests further research into the role of machine learning algorithms in reducing interpretive errors in dentistry.
期刊介绍:
Clinical and Experimental Dental Research aims to provide open access peer-reviewed publications of high scientific quality representing original clinical, diagnostic or experimental work within all disciplines and fields of oral medicine and dentistry. The scope of Clinical and Experimental Dental Research comprises original research material on the anatomy, physiology and pathology of oro-facial, oro-pharyngeal and maxillofacial tissues, and functions and dysfunctions within the stomatognathic system, and the epidemiology, aetiology, prevention, diagnosis, prognosis and therapy of diseases and conditions that have an effect on the homeostasis of the mouth, jaws, and closely associated structures, as well as the healing and regeneration and the clinical aspects of replacement of hard and soft tissues with biomaterials, and the rehabilitation of stomatognathic functions. Studies that bring new knowledge on how to advance health on the individual or public health levels, including interactions between oral and general health and ill-health are welcome.