{"title":"Flagellate bacteria-mediated tumour antigen delivery: A novel approach to enhance dendritic cell activation for in situ cancer vaccination","authors":"Wen Xia, Jinhui Wu","doi":"10.1111/1751-7915.70028","DOIUrl":null,"url":null,"abstract":"<p>In situ vaccination is a therapeutic approach aimed at exploiting tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. Antigens released from dying tumour cells are assumed to be taken up by activated dendritic cells and presented to T cells that seek out and destroy tumour cells. This process is significantly impeded in the immunosuppressive microenvironment of tumours. There is a growing trend in in situ vaccine strategies that utilize bacteria as natural adjuvants or as factories for cytokines, aiming to enhance the presentation of in situ antigens by antigen-presenting cells. Recently, a novel approach using flagellate bacteria-mediated antigen delivery to activate dendritic cells has been proposed. This method actively facilitates the delivery of intratumoral antigens, improving their presentation for in situ cancer vaccination. Here, we highlight how flagellate bacteria-mediated antigen delivery enhances the immune activation capabilities of in situ vaccines. Meanwhile, we provide perspectives and outlooks on these promising antigen delivery technologies.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70028","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In situ vaccination is a therapeutic approach aimed at exploiting tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. Antigens released from dying tumour cells are assumed to be taken up by activated dendritic cells and presented to T cells that seek out and destroy tumour cells. This process is significantly impeded in the immunosuppressive microenvironment of tumours. There is a growing trend in in situ vaccine strategies that utilize bacteria as natural adjuvants or as factories for cytokines, aiming to enhance the presentation of in situ antigens by antigen-presenting cells. Recently, a novel approach using flagellate bacteria-mediated antigen delivery to activate dendritic cells has been proposed. This method actively facilitates the delivery of intratumoral antigens, improving their presentation for in situ cancer vaccination. Here, we highlight how flagellate bacteria-mediated antigen delivery enhances the immune activation capabilities of in situ vaccines. Meanwhile, we provide perspectives and outlooks on these promising antigen delivery technologies.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes