A comprehensive review on iron‒carbon microelectrolysis constructed wetlands: Efficiency, mechanism and prospects

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yongqiang Wang, Linlin Li, Xiaochun Guo, Aiwen Wang, Yunhao Pan, Jun Ma, Shaoyong Lu, Dongmei Liu
{"title":"A comprehensive review on iron‒carbon microelectrolysis constructed wetlands: Efficiency, mechanism and prospects","authors":"Yongqiang Wang, Linlin Li, Xiaochun Guo, Aiwen Wang, Yunhao Pan, Jun Ma, Shaoyong Lu, Dongmei Liu","doi":"10.1016/j.watres.2024.122648","DOIUrl":null,"url":null,"abstract":"The traditional constructed wetlands (CWs) face challenges such as significant seasonal fluctuations in decontamination performance and susceptibility to clogging, with the bottlenecks in advanced wastewater treatment becoming increasingly prominent. The iron‒carbon microelectrolysis coupled with constructed wetlands (ICME‒CWs) represents a promising new type of CWs, capable of removing typical and emerging pollutants in water through various mechanisms including adsorption, precipitation, oxidation‒reduction, microelectrolysis, and plant‒microbial synergy. Therefore, this review summarizes the sources, preparation, and basic properties of the ICME substrate commonly used in ICME‒CWs in recent years. It systematically outlines the decontamination mechanisms of ICME‒CWs and their removal performance for pollutants. Additionally, the potential ecological effects of ICME on wetland organisms (microorganisms and plants) are discussed. Finally, the prospects and challenges of ICME‒CWs in applications such as greenhouse gas reduction, groundwater remediation, and the removal of emerging pollutants are proposed. This review aims to advance the development of ICME‒CWs technology for efficient wastewater treatment and provide prospects and guidance for the sustainable and environmentally friendly development of CWs.","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122648","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional constructed wetlands (CWs) face challenges such as significant seasonal fluctuations in decontamination performance and susceptibility to clogging, with the bottlenecks in advanced wastewater treatment becoming increasingly prominent. The iron‒carbon microelectrolysis coupled with constructed wetlands (ICME‒CWs) represents a promising new type of CWs, capable of removing typical and emerging pollutants in water through various mechanisms including adsorption, precipitation, oxidation‒reduction, microelectrolysis, and plant‒microbial synergy. Therefore, this review summarizes the sources, preparation, and basic properties of the ICME substrate commonly used in ICME‒CWs in recent years. It systematically outlines the decontamination mechanisms of ICME‒CWs and their removal performance for pollutants. Additionally, the potential ecological effects of ICME on wetland organisms (microorganisms and plants) are discussed. Finally, the prospects and challenges of ICME‒CWs in applications such as greenhouse gas reduction, groundwater remediation, and the removal of emerging pollutants are proposed. This review aims to advance the development of ICME‒CWs technology for efficient wastewater treatment and provide prospects and guidance for the sustainable and environmentally friendly development of CWs.

Abstract Image

铁碳微电解构建湿地综述:效率、机理与前景
传统的人工湿地(CWs)面临着净化性能季节性波动大、易堵塞等挑战,先进的污水处理瓶颈日益突出。铁碳微电解耦合建造湿地(ICME-CWs)是一种前景广阔的新型建造湿地,能够通过吸附、沉淀、氧化还原、微电解和植物微生物协同作用等多种机制去除水中的典型和新兴污染物。因此,本综述总结了近年来在 ICME-CW 中常用的 ICME 基质的来源、制备方法和基本特性。它系统地概述了 ICME-CWs 的去污机制及其对污染物的去除性能。此外,还讨论了 ICME 对湿地生物(微生物和植物)的潜在生态影响。最后,提出了 ICME-CWs 在温室气体减排、地下水修复和去除新兴污染物等方面的应用前景和挑战。本综述旨在推动 ICME-CWs 技术在高效废水处理方面的发展,并为 CWs 的可持续和环境友好型发展提供展望和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信