Md Abdullah Al Masud, Alazar Araia, Yuxin Wang, Jianli Hu, Yuhe Tian
{"title":"Machine learning-aided process design using limited experimental data: A microwave-assisted ammonia synthesis case study","authors":"Md Abdullah Al Masud, Alazar Araia, Yuxin Wang, Jianli Hu, Yuhe Tian","doi":"10.1002/aic.18621","DOIUrl":null,"url":null,"abstract":"<p>An open research question lies in how machine learning (ML) can accelerate the design optimization of chemical processes which are at very early experimental development stage with limited data availability. As an example, this article investigates the design of an intensified microwave-assisted ammonia production reactor with 46 experimental data. We present an integrated approach of neural networks and synthetic minority oversampling technique to quantify the nonlinear input-output relationships of this process. For ammonia concentration predictions at discrete operating conditions, the approach demonstrates 96.1% average accuracy over other ML methods (e.g., support vector regression 84.2%). The approach has also been applied for continuous optimization, identifying the optimal synthesis conditions at 597.37 K, 0.55MPa with feed flow rate of 1.67 ×10<sup>−3</sup> m<sup>3</sup>/s kg and hydrogen to nitrogen ratio of 1 which is consistent with experimental observations. The data-driven model enables to integrate this reactor with existing ammonia production infrastructure and benchmark with conventional techniques.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"71 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18621","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An open research question lies in how machine learning (ML) can accelerate the design optimization of chemical processes which are at very early experimental development stage with limited data availability. As an example, this article investigates the design of an intensified microwave-assisted ammonia production reactor with 46 experimental data. We present an integrated approach of neural networks and synthetic minority oversampling technique to quantify the nonlinear input-output relationships of this process. For ammonia concentration predictions at discrete operating conditions, the approach demonstrates 96.1% average accuracy over other ML methods (e.g., support vector regression 84.2%). The approach has also been applied for continuous optimization, identifying the optimal synthesis conditions at 597.37 K, 0.55MPa with feed flow rate of 1.67 ×10−3 m3/s kg and hydrogen to nitrogen ratio of 1 which is consistent with experimental observations. The data-driven model enables to integrate this reactor with existing ammonia production infrastructure and benchmark with conventional techniques.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.