Atom-Level 2D Catalysts Accelerating Deposition/Dissolution Kinetics in Lithium–Sulfur Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kaipeng Cheng, Xiahui Huang, Yuting Li, Jianbo Zhao, Lichan Sun, Yinghuan Xu, Zhenjiang Cao, Yahong Chen
{"title":"Atom-Level 2D Catalysts Accelerating Deposition/Dissolution Kinetics in Lithium–Sulfur Batteries","authors":"Kaipeng Cheng, Xiahui Huang, Yuting Li, Jianbo Zhao, Lichan Sun, Yinghuan Xu, Zhenjiang Cao, Yahong Chen","doi":"10.1002/adfm.202410742","DOIUrl":null,"url":null,"abstract":"The performance of high-energy-density lithium–sulfur (Li–S) batteries is limited by the unmanageable deposition/dissolution kinetics of lithium anode and sulfur cathode, leading to subpar electrochemical efficiency. Prior to being deposited on the electrolyte/electrode interface or within the interior, the solvated lithium-ion (Li<sup>+</sup>) must undergo de-solvation to produce free Li<sup>+</sup> ions. These ions then participate in subsequent Redox reactions. The sulfur cathode faces challenges related to solid–liquid transformation and polysulfide conversion/shuttle, which impact the deposition/dissolution process. These issues collectively create insurmountable electrochemical barriers in lithium–sulfur batteries. Atom-level 2D catalysts, contributing to the consummate atomic efficiency (≈100 at%), play an important role in accelerating deposition/dissolution kinetics in lithium–sulfur batteries. In the review, the preparation of atom-level 2D catalysts and catalytic kinetic process on accelerating Li<sup>+</sup> de-solvation, Li<sup>0</sup> stripping/dissolution, Li<sup>0</sup> nucleation/deposition of lithium anode, polysulfide conversion, and Li<sub>x</sub>S deposition of sulfur cathode are summarized, and the outlook of high-performance single-atom, multiple atoms modified 2D catalysts in lithium, sodium, and zinc-based batteries is putting forward.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202410742","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of high-energy-density lithium–sulfur (Li–S) batteries is limited by the unmanageable deposition/dissolution kinetics of lithium anode and sulfur cathode, leading to subpar electrochemical efficiency. Prior to being deposited on the electrolyte/electrode interface or within the interior, the solvated lithium-ion (Li+) must undergo de-solvation to produce free Li+ ions. These ions then participate in subsequent Redox reactions. The sulfur cathode faces challenges related to solid–liquid transformation and polysulfide conversion/shuttle, which impact the deposition/dissolution process. These issues collectively create insurmountable electrochemical barriers in lithium–sulfur batteries. Atom-level 2D catalysts, contributing to the consummate atomic efficiency (≈100 at%), play an important role in accelerating deposition/dissolution kinetics in lithium–sulfur batteries. In the review, the preparation of atom-level 2D catalysts and catalytic kinetic process on accelerating Li+ de-solvation, Li0 stripping/dissolution, Li0 nucleation/deposition of lithium anode, polysulfide conversion, and LixS deposition of sulfur cathode are summarized, and the outlook of high-performance single-atom, multiple atoms modified 2D catalysts in lithium, sodium, and zinc-based batteries is putting forward.

Abstract Image

加速锂硫电池沉积/溶解动力学的原子级二维催化剂
高能量密度锂硫(Li-S)电池的性能受到锂正极和硫负极难以控制的沉积/溶解动力学的限制,导致电化学效率低下。在沉积到电解质/电极界面或内部之前,溶解的锂离子(Li+)必须经过去溶解过程,以产生游离的 Li+ 离子。这些离子随后参与后续的氧化还原反应。硫阴极面临着固液转化和多硫化物转化/钝化的挑战,这对沉积/溶解过程产生了影响。这些问题共同构成了锂硫电池难以逾越的电化学障碍。原子级二维催化剂有助于实现完美的原子效率(≈100 at%),在加速锂硫电池沉积/溶解动力学方面发挥着重要作用。综述总结了原子级二维催化剂的制备方法和催化动力学过程对加速锂正极的 Li+ 脱溶、Li0 剥离/溶解、Li0 成核/沉积、多硫转化和硫正极的 LixS 沉积的影响,并展望了高性能单原子、多原子修饰二维催化剂在锂、钠和锌基电池中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信