{"title":"Physics-Informed Neural Networks for the Augmented System of Shallow Water Equations With Topography","authors":"Susanna Dazzi","doi":"10.1029/2023wr036589","DOIUrl":null,"url":null,"abstract":"Physics-informed neural networks (PINNs) are gaining attention as an alternative approach to solve scientific problems governed by differential equations. This work aims at assessing the effectiveness of PINNs to solve a set of partial differential equations for which this method has never been considered, namely the augmented shallow water equations (SWEs) with topography. Differently from traditional SWEs, the bed elevation is considered as an additional conserved variable, and therefore one more equation expressing the fixed-bed condition is included in the system. This approach allows the PINN model to leverage automatic differentiation to compute the bed slopes by learning the topographical information during training. PINNs are here tested for different one-dimensional cases with non-flat topography, and results are compared with analytical solutions. Though some limitations can be highlighted, PINNs show a good accuracy for the depth and velocity predictions even in the presence of non-horizontal bottom. The solution of the augmented system of SWEs can therefore be regarded as a suitable alternative strategy to deal with flows over complex topography using PINNs, also in view of future extensions to realistic problems.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"12 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036589","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Physics-informed neural networks (PINNs) are gaining attention as an alternative approach to solve scientific problems governed by differential equations. This work aims at assessing the effectiveness of PINNs to solve a set of partial differential equations for which this method has never been considered, namely the augmented shallow water equations (SWEs) with topography. Differently from traditional SWEs, the bed elevation is considered as an additional conserved variable, and therefore one more equation expressing the fixed-bed condition is included in the system. This approach allows the PINN model to leverage automatic differentiation to compute the bed slopes by learning the topographical information during training. PINNs are here tested for different one-dimensional cases with non-flat topography, and results are compared with analytical solutions. Though some limitations can be highlighted, PINNs show a good accuracy for the depth and velocity predictions even in the presence of non-horizontal bottom. The solution of the augmented system of SWEs can therefore be regarded as a suitable alternative strategy to deal with flows over complex topography using PINNs, also in view of future extensions to realistic problems.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.