Insights into the influence of intercropping and arbuscular mycorrhizal inoculation on two modern durum wheat cultivars and their associated microbiota
Elisa Zampieri, Fabiano Sillo, Giulio Metelli, Maria Alexandra Cucu, Vincenzo Montesano, Giulia Quagliata, Lena Philipp, Francesca Brescia, Adriano Conte, Luca Giovannini, Carmelo Mennone, Angelo Fiore, Stefania Astolfi, Daniel Savatin, Francesco Sestili, Thomas Reitz, Raffaella Balestrini
{"title":"Insights into the influence of intercropping and arbuscular mycorrhizal inoculation on two modern durum wheat cultivars and their associated microbiota","authors":"Elisa Zampieri, Fabiano Sillo, Giulio Metelli, Maria Alexandra Cucu, Vincenzo Montesano, Giulia Quagliata, Lena Philipp, Francesca Brescia, Adriano Conte, Luca Giovannini, Carmelo Mennone, Angelo Fiore, Stefania Astolfi, Daniel Savatin, Francesco Sestili, Thomas Reitz, Raffaella Balestrini","doi":"10.1007/s00374-024-01872-3","DOIUrl":null,"url":null,"abstract":"<p>Intercropping, based on the interplay between cereals and legumes, might be an encouraging approach to improve soil fertility and crop productivity and to guarantee more sustainable farming systems. However, plant consociation is also influenced by the interaction between roots and soil microbial communities, and different plant genotypes might differently respond to this management. Here, a 2-year field study was carried out, verifying the impact of intercropping and the inoculation with arbuscular mycorrhizal fungi (AMF) on two varieties of durum wheat, using a lentil variety as intercropped plant species, on wheat agronomic parameters and grain features, as well as on microbial communities of soil, rhizosphere and wheat roots. Results showed a genotype effect on diverse agronomic parameters, gluten quality and grain elemental concentrations. Additionally, intercropping and AM fungal inoculation affected and shaped the microbial alpha diversity and composition, especially for the AMF community, at root level. Overall, the effects of the considered treatments (intercropping with lentil and AM fungal inoculation) were noticeably influenced by the specific wheat genotype, suggesting the importance to conduct a careful selection of intercropped genotypes.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01872-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Intercropping, based on the interplay between cereals and legumes, might be an encouraging approach to improve soil fertility and crop productivity and to guarantee more sustainable farming systems. However, plant consociation is also influenced by the interaction between roots and soil microbial communities, and different plant genotypes might differently respond to this management. Here, a 2-year field study was carried out, verifying the impact of intercropping and the inoculation with arbuscular mycorrhizal fungi (AMF) on two varieties of durum wheat, using a lentil variety as intercropped plant species, on wheat agronomic parameters and grain features, as well as on microbial communities of soil, rhizosphere and wheat roots. Results showed a genotype effect on diverse agronomic parameters, gluten quality and grain elemental concentrations. Additionally, intercropping and AM fungal inoculation affected and shaped the microbial alpha diversity and composition, especially for the AMF community, at root level. Overall, the effects of the considered treatments (intercropping with lentil and AM fungal inoculation) were noticeably influenced by the specific wheat genotype, suggesting the importance to conduct a careful selection of intercropped genotypes.
以谷物和豆科植物之间的相互作用为基础的间作可能是一种令人鼓舞的方法,可以提高土壤肥力和作物生产力,并保证耕作系统更具可持续性。然而,植物的联合也受到根系和土壤微生物群落之间相互作用的影响,不同的植物基因型可能对这种管理方式做出不同的反应。在此,我们进行了一项为期两年的田间研究,验证了间作和接种丛枝菌根真菌(AMF)对两个硬粒小麦品种(使用扁豆品种作为间作植物物种)的影响,以及对小麦农艺参数和谷物特征以及土壤、根瘤菌层和小麦根部微生物群落的影响。结果表明,基因型对各种农艺参数、面筋质量和谷物元素浓度都有影响。此外,间作和AM真菌接种也影响和塑造了微生物α的多样性和组成,特别是根层的AMF群落。总之,所考虑的处理方法(与扁豆间作和接种 AM 真菌)的效果明显受到特定小麦基因型的影响,这表明谨慎选择间作基因型的重要性。
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.