Strain-Controlled Galvanic Synthesis of Platinum Icosahedral Nanoframes and Their Enhanced Catalytic Activity toward Oxygen Reduction

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siyu Zhou, Minghao Xie, Yong Ding, Zhiqi Wang, Quynh Nguyen, Kei Kwan Li, Younan Xia
{"title":"Strain-Controlled Galvanic Synthesis of Platinum Icosahedral Nanoframes and Their Enhanced Catalytic Activity toward Oxygen Reduction","authors":"Siyu Zhou, Minghao Xie, Yong Ding, Zhiqi Wang, Quynh Nguyen, Kei Kwan Li, Younan Xia","doi":"10.1021/acs.nanolett.4c02764","DOIUrl":null,"url":null,"abstract":"The unique strain distribution on the surface of a Pd icosahedral nanocrystal is leveraged to control the sites for oxidation and reduction involved in the galvanic replacement reaction. Specifically, Pd is oxidized and dissolved from the center of each {111} facet due to its tensile strain, while the Pt(II) precursor adsorbs onto the vertices and edges featuring a compressive strain, followed by surface reduction and conformal deposition of the Pt atoms. Once the galvanic reaction is initiated, the {111} facets become more vulnerable to oxidation and dissolution, as the vertices and edges are protected by the deposited Pt atoms. The site-selected galvanic reaction naturally results in the formation of Pt icosahedral nanoframes covered by compressively strained {111} facets, which show enhanced catalytic activity and durability toward oxygen reduction relative to commercial Pt/C.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02764","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The unique strain distribution on the surface of a Pd icosahedral nanocrystal is leveraged to control the sites for oxidation and reduction involved in the galvanic replacement reaction. Specifically, Pd is oxidized and dissolved from the center of each {111} facet due to its tensile strain, while the Pt(II) precursor adsorbs onto the vertices and edges featuring a compressive strain, followed by surface reduction and conformal deposition of the Pt atoms. Once the galvanic reaction is initiated, the {111} facets become more vulnerable to oxidation and dissolution, as the vertices and edges are protected by the deposited Pt atoms. The site-selected galvanic reaction naturally results in the formation of Pt icosahedral nanoframes covered by compressively strained {111} facets, which show enhanced catalytic activity and durability toward oxygen reduction relative to commercial Pt/C.

Abstract Image

应变控制电化学合成二十面体铂纳米框架及其增强的氧还原催化活性
利用钯二十面体纳米晶体表面独特的应变分布来控制电化学置换反应中的氧化和还原位置。具体来说,钯因其拉伸应变而从每个{111}面的中心被氧化和溶解,而铂(II)前驱体则吸附在具有压缩应变的顶点和边缘,然后进行表面还原和铂原子的保形沉积。一旦启动电化反应,由于顶点和边缘受到沉积铂原子的保护,{111}面变得更容易氧化和溶解。选址电化反应自然形成了由压缩应变{111}面覆盖的铂二十面体纳米框架,与商用 Pt/C 相比,这种纳米框架在氧气还原方面显示出更强的催化活性和耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信