Efficient and spectrally stable pure blue light-emitting diodes enabled by phosphonate passivated CsPbBr3 nanoplatelets with conjugated polyelectrolyte-based energy transfer layer

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2024-09-29 DOI:10.1002/eom2.12487
Jinu Park, Hyunjin Cho, Joonyun Kim, Yu-Ching Huang, Nakyung Kim, Seoyeon Park, Yunna Kim, Sukki Lee, Jiyoung Kwon, Doh C. Lee, Byungha Shin
{"title":"Efficient and spectrally stable pure blue light-emitting diodes enabled by phosphonate passivated CsPbBr3 nanoplatelets with conjugated polyelectrolyte-based energy transfer layer","authors":"Jinu Park,&nbsp;Hyunjin Cho,&nbsp;Joonyun Kim,&nbsp;Yu-Ching Huang,&nbsp;Nakyung Kim,&nbsp;Seoyeon Park,&nbsp;Yunna Kim,&nbsp;Sukki Lee,&nbsp;Jiyoung Kwon,&nbsp;Doh C. Lee,&nbsp;Byungha Shin","doi":"10.1002/eom2.12487","DOIUrl":null,"url":null,"abstract":"<p>Lead halide perovskites exhibit a very wide color gamut due to their extremely narrow emission spectra, typically characterized by a full-width at half-maximum (FWHM) of less than 20 nm. Significant advancements have been made in developing highly efficient and stable green, red, and near-infrared perovskite light-emitting diodes (PeLEDs). However, achieving efficient and stable pure blue-emitting PeLEDs remains a significant challenge. In this work, we successfully synthesized monoanionic octyl-phosphonate capped CsPbBr<sub>3</sub> nanoplatelets (OPA-NPLs) using a combination of octyl-phosphonic acid and oleylamine at room temperature, diverging from common approaches that necessitate complex high-temperature methods, such as hot injection, to accommodate short-chain ligands. The OPA-NPLs exhibit pure blue photoluminescence at 462 nm with a FWHM of 14 nm. Compared with CsPbBr<sub>3</sub> nanoplatelets synthesized using oleic acid, OPA-NPLs demonstrate significantly improved thermal stability and higher photoluminescence quantum yield (PLQY) of 90%. Additionally, we introduced Poly[(9,9-bis(3′-((<i>N,N</i>-dimethyl)-<i>N</i>-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]dibromide (PFN-Br), a conjugated polyelectrolyte material, as a hole transport layer. This facilitated energy transfer between PFN-Br and the CsPbBr<sub>3</sub> nanoplatelets. The resulting device demonstrated an electroluminescence peak at 462 nm, an extremely narrow FWHM of 14 nm, and a maximum external quantum efficiency (EQE) of 4%. Notably, the device maintained pure blue emission without spectral peak shift even during degradation caused by excess joule heating.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 10","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12487","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lead halide perovskites exhibit a very wide color gamut due to their extremely narrow emission spectra, typically characterized by a full-width at half-maximum (FWHM) of less than 20 nm. Significant advancements have been made in developing highly efficient and stable green, red, and near-infrared perovskite light-emitting diodes (PeLEDs). However, achieving efficient and stable pure blue-emitting PeLEDs remains a significant challenge. In this work, we successfully synthesized monoanionic octyl-phosphonate capped CsPbBr3 nanoplatelets (OPA-NPLs) using a combination of octyl-phosphonic acid and oleylamine at room temperature, diverging from common approaches that necessitate complex high-temperature methods, such as hot injection, to accommodate short-chain ligands. The OPA-NPLs exhibit pure blue photoluminescence at 462 nm with a FWHM of 14 nm. Compared with CsPbBr3 nanoplatelets synthesized using oleic acid, OPA-NPLs demonstrate significantly improved thermal stability and higher photoluminescence quantum yield (PLQY) of 90%. Additionally, we introduced Poly[(9,9-bis(3′-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]dibromide (PFN-Br), a conjugated polyelectrolyte material, as a hole transport layer. This facilitated energy transfer between PFN-Br and the CsPbBr3 nanoplatelets. The resulting device demonstrated an electroluminescence peak at 462 nm, an extremely narrow FWHM of 14 nm, and a maximum external quantum efficiency (EQE) of 4%. Notably, the device maintained pure blue emission without spectral peak shift even during degradation caused by excess joule heating.

Abstract Image

具有共轭聚电解质能量转移层的膦酸盐钝化 CsPbBr3 纳米微晶实现高效、光谱稳定的纯蓝光发光二极管
卤化铅包晶石具有极窄的发射光谱,典型特征是半最大值全宽(FWHM)小于 20 纳米,因而具有非常宽的色域。在开发高效稳定的绿色、红色和近红外过氧化物发光二极管(PeLED)方面取得了重大进展。然而,实现高效稳定的纯蓝色发光 PeLED 仍然是一项重大挑战。在这项工作中,我们采用辛基膦酸和油胺的组合,在室温下成功合成了单阴离子辛基膦酸封端的 CsPbBr3 纳米片(OPA-NPLs),这有别于为适应短链配体而必须采用热注入等复杂高温方法的常见方法。OPA-NPL 在 462 纳米波长处显示出纯正的蓝色光致发光,FWHM 为 14 纳米。与使用油酸合成的 CsPbBr3 纳米颗粒相比,OPA-NPLs 的热稳定性显著提高,光致发光量子产率(PLQY)高达 90%。此外,我们还引入了共轭聚电解质材料聚[(9,9-双(3′-((N,N-二甲基)-N-乙基铵)-丙基)-2,7-芴)-盐-2,7-(9,9-二辛基芴)]二溴化物(PFN-Br)作为空穴传输层。这促进了 PFN-Br 和 CsPbBr3 纳米片之间的能量转移。由此产生的器件在 462 纳米波长处显示出电致发光峰值,极窄的 FWHM 为 14 纳米波长,最大外部量子效率 (EQE) 为 4%。值得注意的是,即使在过量焦耳热引起的降解过程中,该器件也能保持纯蓝色发射,而不会出现光谱峰值偏移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信