Benchmarking the Performance of Lithium and Sodium-Ion Batteries With Different Electrode and Electrolyte Materials

Energy Storage Pub Date : 2024-10-16 DOI:10.1002/est2.70068
Sandeep Paul, Debanjan Acharyya, Deepak Punetha
{"title":"Benchmarking the Performance of Lithium and Sodium-Ion Batteries With Different Electrode and Electrolyte Materials","authors":"Sandeep Paul,&nbsp;Debanjan Acharyya,&nbsp;Deepak Punetha","doi":"10.1002/est2.70068","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Sodium-ion (Na-ion) batteries are considered a promising alternative to lithium-ion (Li-ion) batteries due to the abundant availability of sodium, which helps mitigate supply chain risks associated with Li-ion batteries. Many studies have focused on the design of Li-ion batteries, exploring their energy, power, and cost aspects. However, there is still a lack of similar research conducted on Na-ion batteries. A comparison of the cell voltage characteristics and rate capability of sodium and lithium-ion batteries using different types of electrodes and electrolytes. For sodium-ion batteries electrolytes used are NaPF<sub>6</sub> and NaClO<sub>4</sub> and electrodes used are NaCoO<sub>2</sub>, NaNiO<sub>2</sub>, NaFePO<sub>4</sub>, (Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>), graphite, hard carbon, sodium metal, and sodium titanate. For lithium-ion batteries with LiPF<sub>6</sub> and KOH electrolytes and electrodes as LiCoO<sub>2</sub>, NMC, LVP, Li<sub>2</sub>MnSiO<sub>4</sub>, graphite, silicon, lithium titanate (LTO), lithium metal. A thorough analysis of six important performance metrics is part of the investigation: Ragone plots, Electrolyte salt concentration versus spatial coordinate, electrolyte potential versus spatial coordinate, Cell voltage versus battery cell state of charge, Cell voltage versus time, and state variable versus time. Comparing operating voltage and rated capacity NMC and graphite is selected for lithium-ion batteries as this combination provides operating voltage up to 4.2 V and a rated capacity of 275 Wh/kg, for sodium-ion for NaCoO<sub>2</sub> and hard carbon which has an operating voltage of 2.5–3.8 V and rated capacity around 200 Wh/kg and another combination of electrode as NaFePO<sub>4</sub> and sodium metal with NaClO<sub>4</sub> electrolyte has a maximum operating voltage of 2.8–3.8 V and rated capacity around 200 Wh/kg. This paper shows significant influence of electrolyte selection on battery performance. The Ragone plots demonstrate that LiPF<sub>6</sub> electrolytes in lithium-ion batteries and NaPF<sub>6</sub> electrolytes in sodium-ion batteries both exhibit superior specific energy densities compared to their KOH and NaClO<sub>4</sub> counterparts, respectively. The work presented in this paper encourages researchers to select alternate electrolytes and electrodes for lithium-ion and sodium-ion batteries in order to obtain optimal device performance.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion (Na-ion) batteries are considered a promising alternative to lithium-ion (Li-ion) batteries due to the abundant availability of sodium, which helps mitigate supply chain risks associated with Li-ion batteries. Many studies have focused on the design of Li-ion batteries, exploring their energy, power, and cost aspects. However, there is still a lack of similar research conducted on Na-ion batteries. A comparison of the cell voltage characteristics and rate capability of sodium and lithium-ion batteries using different types of electrodes and electrolytes. For sodium-ion batteries electrolytes used are NaPF6 and NaClO4 and electrodes used are NaCoO2, NaNiO2, NaFePO4, (Na3V2(PO4)3), graphite, hard carbon, sodium metal, and sodium titanate. For lithium-ion batteries with LiPF6 and KOH electrolytes and electrodes as LiCoO2, NMC, LVP, Li2MnSiO4, graphite, silicon, lithium titanate (LTO), lithium metal. A thorough analysis of six important performance metrics is part of the investigation: Ragone plots, Electrolyte salt concentration versus spatial coordinate, electrolyte potential versus spatial coordinate, Cell voltage versus battery cell state of charge, Cell voltage versus time, and state variable versus time. Comparing operating voltage and rated capacity NMC and graphite is selected for lithium-ion batteries as this combination provides operating voltage up to 4.2 V and a rated capacity of 275 Wh/kg, for sodium-ion for NaCoO2 and hard carbon which has an operating voltage of 2.5–3.8 V and rated capacity around 200 Wh/kg and another combination of electrode as NaFePO4 and sodium metal with NaClO4 electrolyte has a maximum operating voltage of 2.8–3.8 V and rated capacity around 200 Wh/kg. This paper shows significant influence of electrolyte selection on battery performance. The Ragone plots demonstrate that LiPF6 electrolytes in lithium-ion batteries and NaPF6 electrolytes in sodium-ion batteries both exhibit superior specific energy densities compared to their KOH and NaClO4 counterparts, respectively. The work presented in this paper encourages researchers to select alternate electrolytes and electrodes for lithium-ion and sodium-ion batteries in order to obtain optimal device performance.

采用不同电极和电解质材料的锂电池和钠离子电池性能基准测试
钠离子(Na-ion)电池被认为是锂离子(Li-ion)电池的一种有前途的替代品,因为钠的供应充足,有助于降低与锂离子电池相关的供应链风险。许多研究都侧重于锂离子电池的设计,探索其能量、功率和成本方面的问题。然而,在镍离子电池方面仍缺乏类似的研究。使用不同类型的电极和电解质,比较钠离子电池和锂离子电池的电池电压特性和速率能力。钠离子电池使用的电解质是 NaPF6 和 NaClO4,使用的电极是 NaCoO2、NaNiO2、NaFePO4、(Na3V2(PO4)3)、石墨、硬碳、金属钠和钛酸钠。对于使用 LiPF6 和 KOH 电解质的锂离子电池,电极为 LiCoO2、NMC、LVP、Li2MnSiO4、石墨、硅、钛酸锂(LTO)和金属锂。研究还对六个重要的性能指标进行了全面分析:Ragone 图、电解质盐浓度与空间坐标关系图、电解质电位与空间坐标关系图、电芯电压与电芯充电状态关系图、电芯电压与时间关系图以及状态变量与时间关系图。在比较工作电压和额定容量时,锂离子电池选择了 NMC 和石墨,因为这种组合可提供高达 4.2 V 的工作电压和 275 Wh/kg 的额定容量;钠离子电池选择了 NaCoO2 和硬碳,其工作电压为 2.5-3.8 V,额定容量约为 200 Wh/kg;另一种电极组合为 NaFePO4 和金属钠与 NaClO4 电解液,其最大工作电压为 2.8-3.8 V,额定容量约为 200 Wh/kg。本文显示了电解液选择对电池性能的重要影响。Ragone 图表明,锂离子电池中的 LiPF6 电解质和钠离子电池中的 NaPF6 电解质分别比其 KOH 和 NaClO4 电解质表现出更高的比能量密度。本文介绍的工作鼓励研究人员为锂离子电池和钠离子电池选择替代电解质和电极,以获得最佳的设备性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信