Olga Senko, Nikolay Stepanov, Olga Maslova, Marina Gladchenko, Sergey Gaydamaka, Aysel Aslanli, Elena Efremenko
{"title":"Artificially obtained humic-like substances from chicken manure and symbionts in in vitro and in situ improvement of oil degradation in soil","authors":"Olga Senko, Nikolay Stepanov, Olga Maslova, Marina Gladchenko, Sergey Gaydamaka, Aysel Aslanli, Elena Efremenko","doi":"10.1007/s12517-024-12105-0","DOIUrl":null,"url":null,"abstract":"<div><p>Alkaline hydrolysate of chicken manure (HCM) containing artificially formed humic-like substances (HLSs) was investigated in combination with specially loaded cells (bacteria and microalgae) for oil degradation in soil. After 7 days in the laboratory experiment, the oil biodegradation efficiency in the polluted soil (50 g oil/kg soil) was 5–78% in 11 soil samples depending on the soil characteristics and used combination of additives. Higher level of oil-degradation corresponded to soil with high initial concentration of humic substances (HSs) (85–107 g/kg of dry matter). The best result in bioremediation (degradation of 82% of oil for 7 days) was achieved in experiment under field conditions with the similar initial oil pollution in the soil, when the HCM was used as additive (up to 220 mg HLSs/kg dry soil) in combination with an artificial symbionts composed of <i>Rhodococcus erythropolis</i> and <i>Chlorella vulgaris</i> cells. The introduction of HCM into oil-polluted soil with the mentioned cells led to an increase in all controlled enzymatic activities (peroxidase, dehydrogenase, phosphatase, protease, amylase, and urease) in the soil. The observed effects testified to activation of cell metabolic processes in the soil. As a result, the introduction of HCM in combination with artificial symbionts into the soil increased the rate of oil biodegradation under environmental conditions up to 1.8 times.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":476,"journal":{"name":"Arabian Journal of Geosciences","volume":"17 11","pages":""},"PeriodicalIF":1.8270,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12517-024-12105-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Alkaline hydrolysate of chicken manure (HCM) containing artificially formed humic-like substances (HLSs) was investigated in combination with specially loaded cells (bacteria and microalgae) for oil degradation in soil. After 7 days in the laboratory experiment, the oil biodegradation efficiency in the polluted soil (50 g oil/kg soil) was 5–78% in 11 soil samples depending on the soil characteristics and used combination of additives. Higher level of oil-degradation corresponded to soil with high initial concentration of humic substances (HSs) (85–107 g/kg of dry matter). The best result in bioremediation (degradation of 82% of oil for 7 days) was achieved in experiment under field conditions with the similar initial oil pollution in the soil, when the HCM was used as additive (up to 220 mg HLSs/kg dry soil) in combination with an artificial symbionts composed of Rhodococcus erythropolis and Chlorella vulgaris cells. The introduction of HCM into oil-polluted soil with the mentioned cells led to an increase in all controlled enzymatic activities (peroxidase, dehydrogenase, phosphatase, protease, amylase, and urease) in the soil. The observed effects testified to activation of cell metabolic processes in the soil. As a result, the introduction of HCM in combination with artificial symbionts into the soil increased the rate of oil biodegradation under environmental conditions up to 1.8 times.
期刊介绍:
The Arabian Journal of Geosciences is the official journal of the Saudi Society for Geosciences and publishes peer-reviewed original and review articles on the entire range of Earth Science themes, focused on, but not limited to, those that have regional significance to the Middle East and the Euro-Mediterranean Zone.
Key topics therefore include; geology, hydrogeology, earth system science, petroleum sciences, geophysics, seismology and crustal structures, tectonics, sedimentology, palaeontology, metamorphic and igneous petrology, natural hazards, environmental sciences and sustainable development, geoarchaeology, geomorphology, paleo-environment studies, oceanography, atmospheric sciences, GIS and remote sensing, geodesy, mineralogy, volcanology, geochemistry and metallogenesis.