Sheng-Yan Yin, Yingcai Hu, Fengli Qu, Jin Li, Jishan Li
{"title":"Tetraalkynylporphyrin-mediated covalent assembly of gold nanoclusters for targeted tumor fluorescence imaging and enhanced photodynamic therapy","authors":"Sheng-Yan Yin, Yingcai Hu, Fengli Qu, Jin Li, Jishan Li","doi":"10.1007/s00604-024-06741-2","DOIUrl":null,"url":null,"abstract":"<div><p> A covalent assembly strategy was developed to construct a gold nanocluster-based nano-assembly (AuNCNA) in a controllable manner, using Au<sub>8</sub> nanocluster as node and 5,10,15,20-tetra(4-alkynylphenyl)porphine (TEPP) as ligand. Subsequently, the tripeptide arginine glycine aspartic acid (RGD) peptide is further modified via clicking reaction to build a multi-functional nanoplatform (AuNCNA@RGD) that can integrate the targeted fluorescence imaging and efficient photodynamic therapy (PDT). The strong interregulation of Au<sub>8</sub> nanocluster and TEPP results in AuNCNA@RGD exhibiting three distinct advantages: (i) TEPP plays an important role in stabilizing the Au<sub>8</sub> nanocluster and keeping the active site fixed within the framework, thereby enhancing stability of Au<sub>8</sub> nanocluster; (ii) Au<sub>8</sub> nanocluster possess adjustable energy level, which can accelerate the transfer of photogenerated charge and prevent the recombination of electrons and holes, thus improving the photosensitivity of TEPP for PDT; (iii) AuNCNA exhibits bright fluorescence emission that facilitates RGD-assisted targeted tumor imaging. This work expands the construction method of AuNC assembly, and this assembly method is versatile and can flexibly transform different organic ligands to construct various AuNC-based functional nanomaterials.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 11","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06741-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A covalent assembly strategy was developed to construct a gold nanocluster-based nano-assembly (AuNCNA) in a controllable manner, using Au8 nanocluster as node and 5,10,15,20-tetra(4-alkynylphenyl)porphine (TEPP) as ligand. Subsequently, the tripeptide arginine glycine aspartic acid (RGD) peptide is further modified via clicking reaction to build a multi-functional nanoplatform (AuNCNA@RGD) that can integrate the targeted fluorescence imaging and efficient photodynamic therapy (PDT). The strong interregulation of Au8 nanocluster and TEPP results in AuNCNA@RGD exhibiting three distinct advantages: (i) TEPP plays an important role in stabilizing the Au8 nanocluster and keeping the active site fixed within the framework, thereby enhancing stability of Au8 nanocluster; (ii) Au8 nanocluster possess adjustable energy level, which can accelerate the transfer of photogenerated charge and prevent the recombination of electrons and holes, thus improving the photosensitivity of TEPP for PDT; (iii) AuNCNA exhibits bright fluorescence emission that facilitates RGD-assisted targeted tumor imaging. This work expands the construction method of AuNC assembly, and this assembly method is versatile and can flexibly transform different organic ligands to construct various AuNC-based functional nanomaterials.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.