{"title":"Light-tracing based surface deformation measurement strategy for large radio telescopes","authors":"Zihan Zhang, Dejin Yang, Qian Ye, Na Wang","doi":"10.1007/s10686-024-09960-w","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing aperture as well as the observation frequency of radio telescopes in the current period, the deformation caused by time-varying loads such as temperature and wind has been emphasized. Existing methods for measuring deformations often fall short in meeting the demands of full attitude coverage, quasi-real-time response, and high accuracy. This study introduces a novel geometric-optical measurement approach based on light-tracing. Diverging from traditional methods, this approach doesn’t directly measure the surface deformation of the main reflector. Instead, it creates a more easily measurable variable and establishes a mapping relationship between this variable and the main reflector deformation. In this innovative scheme, multiple laser modules are strategically positioned on the main reflector, treating the sub reflector as a spot projection surface. When the panel is displaced, the spot on the projection surface will follow and be displaced. In practice, the main reflector deformation can be solved by recording the position change of the light spots on the projection surface and utilizing the inverse reconstruction model. Besides, effective strategies are proposed to improve the robustness of the scheme. Next, the accuracy and real-time performance of the proposed method are verified through simulations and experiments. Results indicate that the proposed approach presents a fresh perspective to enhance the efficiency and precision of deformation measurements for large-aperture antennas.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"58 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-024-09960-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing aperture as well as the observation frequency of radio telescopes in the current period, the deformation caused by time-varying loads such as temperature and wind has been emphasized. Existing methods for measuring deformations often fall short in meeting the demands of full attitude coverage, quasi-real-time response, and high accuracy. This study introduces a novel geometric-optical measurement approach based on light-tracing. Diverging from traditional methods, this approach doesn’t directly measure the surface deformation of the main reflector. Instead, it creates a more easily measurable variable and establishes a mapping relationship between this variable and the main reflector deformation. In this innovative scheme, multiple laser modules are strategically positioned on the main reflector, treating the sub reflector as a spot projection surface. When the panel is displaced, the spot on the projection surface will follow and be displaced. In practice, the main reflector deformation can be solved by recording the position change of the light spots on the projection surface and utilizing the inverse reconstruction model. Besides, effective strategies are proposed to improve the robustness of the scheme. Next, the accuracy and real-time performance of the proposed method are verified through simulations and experiments. Results indicate that the proposed approach presents a fresh perspective to enhance the efficiency and precision of deformation measurements for large-aperture antennas.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.