{"title":"Pointwise-Sparse Actuator Scheduling for Linear Systems With Controllability Guarantee","authors":"Luca Ballotta;Geethu Joseph;Irawati Rahul Thete","doi":"10.1109/LCSYS.2024.3475886","DOIUrl":null,"url":null,"abstract":"This letter considers the design of sparse actuator schedules for linear time-invariant systems. An actuator schedule selects, for each time instant, which control inputs act on the system in that instant. We address the optimal scheduling of control inputs under a hard constraint on the number of inputs that can be used at each time. For a sparsely controllable system, we characterize sparse actuator schedules that make the system controllable, and then devise a greedy selection algorithm that guarantees controllability while heuristically providing low control effort. We further show how to enhance our greedy algorithm via Markov chain Monte Carlo-based randomized optimization.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10706838/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This letter considers the design of sparse actuator schedules for linear time-invariant systems. An actuator schedule selects, for each time instant, which control inputs act on the system in that instant. We address the optimal scheduling of control inputs under a hard constraint on the number of inputs that can be used at each time. For a sparsely controllable system, we characterize sparse actuator schedules that make the system controllable, and then devise a greedy selection algorithm that guarantees controllability while heuristically providing low control effort. We further show how to enhance our greedy algorithm via Markov chain Monte Carlo-based randomized optimization.